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Chapter 1
Introduction

The hydrodynamic interaction between surface gravity waves and ship hulls
or marine structures has always been of great interest to naval architects and ocean
engineers. Traditionally, this free-surface flow problem has been treated using the
potential-flow theory, which assumes that the fluid viscosity can be neglected.

Potential-flow theory along with linearized free-surface conditions and higher-
order ones have yielded results valid for problems with small-amplitude waves and
small body motions. Nonlinear free-surface effects are important when waves are steep
and body motions are large. The inviscid models based on mixed Eulerian-Lagrangian
approach attributed to Longuet-Higgins and Cokelet (1976) have succeeded in study-
ing some of these nonlinear effects. Some important recent progresses have been made
in the development of boundary element methods (e.g. Nakos et al., 1992 and Raven,
1992). These methods are capable of predicting some quantities of interest, e.g. the
global wave patterns generated by a moving ship, and forces acting on an oscillating
structure. Thorough survey of these inviscid-fluid analyses may be found in Yeung
(1982).

Despite the success achieved by the potential-low theory, there are other
cases, in which the effects of fluid viscosity are important, and the inviscid-fluid
assumption is thus not appropriate. Some of such cases include the studies of ship
wake, large-amplitude motion of marine structures, and nonlinear roll motion of ships.

To understand these flow phenomena, one needs to study the flow details near the
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body and near the free surface, with the effects of viscosity considered.

1.1 Free-surface flow near a surface-piercing body

It is well known that, for a flow near a wall, the shear layer is formed adjacent
to the wall because of vanishing velocity at the wall. In many cases, this shear layer
is rather thin, and the inviscid-flow solution is valid exterior of this thin shear layer.
This observation led to the famous boundary-layer theory, which has been proven
successful in analyzing laminar flows over streamlined bodies (e.g. Schlichting, 1968).
However, in the case of bluff bodies or in the after portion of a streamlined body, the
flow separation results in vortex shedding in the wake. This can only be analyzed
using the fully nonlinear Navier-Stokes equations. On a free-surface, a shear layer is
generated due to the vanishing of shear stress. The free-surface shear layer is usually
weak compared to wall boundary layers. It can be shown that the vorticity generation
at a free surface is proportional to the surface curvature (see Batchelor, 1970). When
the waves are steep, the generation of vortices at the free surface is significant. This
process is again governed by the Navier-Stokes equations.

In wave-body interaction problems, owing to the presence of both the wall
and the free surface, complex viscous effects are present. Waves interact with the
wall boundary layers, and induce flow separations and eddy-shedding. In turn, eddies
shed from the bodies interact with the free surface, resulting in wave deformation and
generation of secondary vortices. When a ship travels on the ocean surface, it sheds
vortices in its wake. This wake pattern is found to be very persistent in time and could
sometimes reach 75 kilometers in length (Griffin et al., 1988). This phenomenon is
believed to be a complex process which involves the interaction between the vorticity
generated by the ship and the surface waves. In the case of steep waves past a bluff
structure, waves induce flow separation behind the structure, resulting in significantly
different forces.

Another closely related phenomenon is the possible generation and intensifi-
cation of the so-called necklace vortices from the bow area of a ship. It was observed by

Baba (1969) that breaking waves originate at the ship’s bow and trail along the hull,
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inducing vortices in the shape of a necklace. This upstream wave-breaking contributes
significantly to the ship resistance. Baba (1981) claimed that the bow-free-surface
juncture bears the same vorticity intensification phenomenon of the “wing-fuselage”
juncture of Hawthorne (1954). However, Yeung and Ananthakrishnan (1992) found
that a clean free surface was unable to generate a very strong cross-stream vortex.
They postulated that the breaking waves around a blunt bow is predominantly driven
by gravitational and inertial forces. As their results are for two-dimensional flows,
their immediate implications on three-dimensional flows are still not obvious.

In this thesis, the flows near a vertical circular cylinder are examined. Par-
ticular attention is on the vortical flow patterns near the body and the free surface.
Cylindrical shapes may be viewed as non-ship like, but they are of great practical
significance in many marine-related applications. Furthermore, in terms of flow sep-
aration, such shapes offer more insights than most streamlined or thin-bodies. With
a little increase in mathematical complexity, flows near an elliptical cylinder or a
spheroidal hull can be considered as generalizations of the present work. The solu-
tion of these three-dimensional, time-dependent, free-surface viscous flow problems

requires an accurate, yet efficient numerical method.

1.2 Methods for free-surface flows in a viscous
fluid

Although the equations governing viscous free-surface flow problems are non-
linear, and hence are formidable for theoretical analyses, many numerical methods
have been developed to solve these problems. However, viscous flow problems are
much more difficult to solve than their inviscid counterparts, and no definitive meth-
ods have yet been established to be a front runner, depending on the level of resolution
to be achieved.

So far most of the Navier-Stokes computations are done by using the finite
difference methods, which can be divided into two categories: Marker-and-Cell (MAC)
method and the boundary-fitted-coordinates method.
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Initiated by Harlow and Welch (1966), MAC method uses finite-difference
method on a rectangular grid and the free surface is tracked using marked parti-
cles. Miyata (1981) used this method to study two-dimensional ship bow-flow prob-
lems, and realistically captured viscous-flow phenomena such as eddy shedding under
the free surface. Arguing that the viscous-stress conditions are critical only at low
Reynolds-numbers, the author applied inviscid conditions at the free surface, and
thus was not able to resolve flow details near the free surface. Using finite-volume
method, Zhu et al (1993) studied three-dimensional viscous flows about a ship us-
ing the Reynolds-Averaged-Navier-Stokes equations (RANS) with a hybrid turbulence
model. It seems that their method is capable of predicting flow phenomena, such as
the flow separation from the hull, the generation of longitudinal vortex, and the re-
sultant wake pattern distortion in the stern region. However, only a “double-body”
free surface was implemented in their study.

The implementation of free-surface boundary condition has been greatly
improved by the introduction of boundary-fitted-coordinates method, in which the
grids conform to the boundary rather than rectangular grids. Shank (1977) first
used this method to study flow around a circular cylinder or a hydrofoil. Yeung and
Ananthakrishnan (1992) developed a sophisticated grid generation technique to study
two-dimensional viscous ship bow flows. Viscosity effects, such as the generation of
free-surface shear layer near the bow, the inception of bow vortices, and the effects
of surface contaminants were simulated successfully. Tahara and Stern (1994) stud-
ied viscous ship flow using the RANS equations with the Baldwin-Lomax turbulence
model, nonlinear inviscid free-surface conditions, and a grid based on boundary-fitted
coordinates. Chen et al. and Weems et al. (1994) predicted near-field ship flows using
RANS equations with a second-order k-¢ closure turbulence model, nonlinear invis-
cid free-surface conditions, and boundary-fitted coordinates. To save computational
effects, a zonal approach was used in their work, which matches the near-field viscous
flow to a potential flow in the far-field. Similar approaches were used by Campana
et al (1994) to study the drift motion of a ship, accounting for the viscous effects.
Farmer et al. (1994) used a multigrid solution method to simulate viscous ship flows

with the Baldwin-Lomax turbulence model and nonlinear inviscid free-surface condi-
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tions. The exact viscous free-surface conditions are implemented by Alessandrini and
Delhommeau (1994) in their viscous ship flow calculations. In view of these recent de-
velopments, the current status of viscous ship hydrodynamics is such that the steady
resistance and steady flow can be predicted reasonably well qualitatively, whereas
the detailed flow patterns near the ship stern or the free surface are not adequately
resolved. There is need for improvement in the area of numerical accuracy, turbu-
lence modeling, and the treatment of free-surface conditions. The numerical accuracy
is a concern for all the finite-difference methods, due to the presence of “numerical
viscosity”, which plagues the solutions at larger Reynolds numbers.

Alternate approaches, which are particularly useful in large Reynolds num-
ber flows, are the vortex methods. They are well developed for two-dimensional
problems. A primitive form of the vortex methods is the discrete vortex method, in
which vortices are generated at each time step at the separation points on the body. A
satisfactory solution of the flow past a body using this method was obtained by Sarp-
kaya (1968). Although this model is only for large Reynolds number, it is widely used
due to its simplicity. A vortex method, which is based on Navier-Stokes equations,
was originated by Chorin (1973). This method, known as the random vortezr method,
differs from the discrete vortex method in the sense that vortices are generated not
only from the separation points, but all around the body to satisfy the no-slip body
condition. This method is a grid-free method, which does not suffer from the “numer-
ical viscosity” associated with most of the time-stepping field-discretization methods.
This property makes the method particularly suitable for flows of large Reynolds
numbers. Since the method was introduced, many improvements have been made,
and it has been applied successfully to many fluid flow problems. Stansby and Dixon
(1983) simulated uniform and oscillating flows past a circular cylinder in conjunction
with a vortex-in-cell method to speed up the computation. Yeung and Vaidhyanathan
(1992) developed a random vortex method capable of solving two-dimensional sep-
arated flows in the presence of a free surface. This new development allows one to
investigate complex free-surface flows using random vortex method. However, be-
cause of its extensive computational requirements, it is yet to be extended to three

dimensions.
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1.3 Spectral methods of solution

The development of higher-order numerical methods has led to the spectral
methods, which are, at least formally, of infinite-order accuracy. The term “spec-
tral method” does not refer to one particular numerical method, but rather a whole
class of numerical methods. They are characterized by the expansion of the solution
in terms of, often orthogonal, basis functions, such as a Fourier series. Since the
mid-nineteenth century, they have been standard analytical tools for linear, separa-
ble differential equations. Nonlinearities presented considerable algebraic difficulties,
until they were surmounted effectively in the early 1970s (Orszag 1969). The solution
of a variety of boundary value problems using spectral methods was systematically
discussed in a monograph by Gottlieb and Orszag (1977). The book by Canuto et
al. (1987) contains a detailed description of many spectral algorithms and presents
an exhaustive discussion of the theoretical aspects of these numerical methods. A
comprehensive review of spectral methods in fluid dynamics is found in Hussaini and
Zang (1987). The popularity of these methods arises from several advantages that
they have over common finite difference methods. Firstly, they converge rapidly. Sec-
ondly, the methods have low or no “numerical viscosity”. Thirdly, their computation
requirement is low.

The most straightforward class of spectral methods is the spectral collocation
methods, in which the expansion coefficients are computed so that the differential
equation is satisfied exactly at a set of collocation points. After they were introduced
by Gottlieb and Orszag (1977), the work of Canuto and Quarteroni (1981) laid down
a solid theoretical basis for these methods. Tan (1985) developed an efficient spectral
collocation method to solve three-dimensional Poisson’s equation and Helmholtz’s
equation using Chebyshev series and Fourier series. A review which covers the theory
and application of these collocation methods is found in Hussaini et al (1989).

Although, as pointed out by Orszag (1980), spectral collocation methods
can be used to deal with general geometries through mappings, they are generally
unsuitable for complex geometries. A new technique that combines the ideas of

spectral methods with those of finite element methods is the spectral element methods.
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These combined methods have the advantages of both methods: the high efficiency
and accuracy of a spectral method, and the geometrical flexibility of a finite element
method. Patera (1984) studied two-dimensional separated flow in a channel expansion
using rectilinear spectral elements. Korczak and Patera (1986) extended the former
work to solve two-dimensional viscous flow in arbitrary geometries using isoparametric
spectral elements. Tan (1989) combined the above two-dimensional isoparametric
spectral element technique and a Chebyshev expansion in the third direction, to study
three-dimensional flow past a strut. Numerical results were obtained for Reynolds
number up to 1,000. Karniadakis et al (1986) used spectral element methods to study
vortex shedding phenomenon after a cylinder, and their numerical results achieved
good agreements with the experimental results. Spectral method today has become
the principal solution technique in simulation of turbulent flow and the computation
of transition to turbulence.

In this thesis, a spectral collocation method is developed to solve free-surface

flow problems near a surface-piercing body for both inviscid and viscous fluids.

1.4 Thesis outline

The thesis is complied as follows. In Chapter 2, the theoretical background
for transient three-dimensional inviscid free-surface flow is briefly reviewed. A spectral
collocation method for solving these problems is introduced and detailed. Specifically,
a spectral Poisson equation solver is developed in cylindrical coordinates. In Chapter
3, after numerical validation and accuracy assessment, the spectral Poisson equation
solver is applied to solve several three-dimensional inviscid free-surface flow problems
of practical interest. These include: a Cauchy-Poisson wave problem, a radiation
problem of a circular cylinder, and a second-order wave diffraction problem by a
circular cylinder. In Chapter 4, the governing equations and boundary conditions
for solving viscous free-surface flow problems are formulated. A numerical procedure
for solving this viscous-flow problem by a spectral collocation method is explained.
This methodology is based on the projection method originally proposed by Chorin
(1968), but implemented with an ADI scheme and a spectral-collocation technique.
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The numerical results for viscous flow problems are given in Chapter 5. Several test
problems are first shown to establish the overall accuracy. Numerical results for a
viscous Cauchy-Poisson wave problem, for uniform flows past a circular cylinder under
a free-slip surface and a real free surface are presented. The complex vortical flow
phenomena near the body and the free surface are examined and discussed. Chapter
6 summarizes the present work and addresses some possible future extensions to this

research.
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Chapter 2

Spectral method for inviscid flow

problem

In this chapter, the theoretical background for solving transient three-dimen-
sional inviscid free-surface flow will be detailed. The mathematical formulation will
be first described, and the numerical treatment will follow.

The following notations are adopted in this thesis: vector quantities and
matrices are shown in bold faces (e.g., x), complex quantities in sans serif type (e.g.,
i = /=1, and dimensional quantities are marked by a prime “’.

Let there be a characteristic length L’ and a characteristic velocity U’ as-
sociated with the flow to be studied. All variables and parameters used henceforth
will be taken as non-dimensionalized with respect to L/, U’ and the fluid density p’,
unless otherwise stated. The appropriate characteristic length and velocity for each
problem to be studied will be different and will be specified when necessary.

2.1 Problem formulation

Consider a fixed cylindrical coordinate system (r’, 4, z') chosen so that the
z'—axis points vertically upwards and the undisturbed free-surface is at z' = 0 (see
Fig. 2.1). The fluid region Q is enclosed by the cylindrical body boundary S located
at r' = r}, free-surface F at z' = 0, far-field boundary ¥ at ' = r/, and a bottom B
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Figure 2.1: Notation and coordinate system.

located at 2’ = —d’. We first choose the take the following two characteristic scales:
length L' = r{, velocity U’ = ,/g'r}, where ¢’ denotes gravitational acceleration.

Field equation

Under the assumptions that the flow is irrotational and the fluid incom-
pressible, it can be shown that there exists a velocity potential of the flow ¢, which
satisfies the Laplace equation

Vig=0 (2.1)

in the domain 2, with the following boundary conditions (see e.g. Wehausen and
Laitone, 1960).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



11

Boundary and initial conditions

On free surface F, if one further assumes that the wave elevation is small

compared with wave length, the following linerized dynamic condition

¢ _
=

can be derived using Euler’s integral. By integrating the above Eqn. (2.2) with respect

-1, z2=0 (2.2)

to time ¢, one can obtain a Dirichlet condition for ¢. Here n(r,8,t) is the free-surface

elevation, which satisfies the following linearized kinematic condition:

Zt—n = g—f-, 2=0. (2.3)
The exact or nonlinear conditions on the free surface can be found in Wehausen and
Laitone (1960). On body S, the no-leak condition provides the following Neumann
condition:

¢n=V-n, (2.4)

where n is a normal on the body surface pointing outwards of €2, and V the prescribed
normal-component of the boundary velocity. On bottom B, the following no-leak

condition is applicable:
¢: =0. (2.5)
On the surface L, if it is a solid boundary,

$n = 0. (2.6)
If ¥ is taken as a far-field boundary, we may impose
¢$=0 (2.7)

as an approximation for an open boundary, provided ¥ is taken to be sufficiently
large so that no wave disturbances reach ¥. Alternatively, one might consider a
time-dependent Sommerfeld type radiation condition as examined in Yeung and Vaid-
hyanathan (1992) or a matching condition of Yeung (1985). In both cases, it can be
treated as a mixed boundary condition within the present framework of solution.

To complete the problem, initial conditions for ¢ and its derivatives ¢. on
F should be specified.
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Calculation of force and moment

After the hydrodynamic problem for ¢ is solved, the horizontal force F; on
the cylinder and overturning moment M, about the sea bottom can be obtained by

integrating the hydrodynamic pressure using the linearized Euler’s integral:
F, = /S pnadS = — /S penzdS, (2.8)

M, = /s pra(z + d)dS = — /S pina(z + d)dS. (2.9)

These forces are non-dimensionalized here by p'U’*r, moment by p'U’ 21"?.

2.2 Pseudo-spectral method of solution

2.2.1 A Poisson-equation solver

The solution of Eqn. (2.1) may be considered as a special application of a
Poisson solver which is also needed in a number of closely related fluid-mechanics
problems, such as the solution of pressure equation in viscous flow problems (to be
studied in Chapter 3). Here we will develop a pseudo-spectral formulation using ideas
similar to Tan (1985). For the present problem in cylindrical coordinates, we will use
Chebyshev polynomials in the vertical direction and Fourier modes in the circum-
ferential direction. The resulting finite-difference equations for the radial direction
are treated by a diagonalization technique. The method developed can treat both
homogeneous and inhomogeneous boundary conditions of the Dirichlet, Neumann, or
mixed type.

For the right-handed cylindrical coordinate system (r, 8, z) shown in Fig. 2.1,

the independent variables are defined in the following ranges:

ri < r < 1,
0 < < 2« (2.10)
-d < 25 0

where r; and r, are the radii of the inner and outer cylindrical boundaries respectively.

It is convenient to map the above domain into a normalized computational domain
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(R,®,2) such that

-1 < R L1
-1 <& <1 (2.11)
-1 £ 7 <1
by using the following relations:
= (R+¢
1+ ®)r (2.12)

z = K(-1+2)
where { = }(ro — i), € = }(ro + i), and & = d/2 are scale and translational factors.
In (R, ®, Z), the Poisson equation V2U = S(R, ®, Z) can be written as:
[ 1 9? 92

Lt CRrormaw t mgzr VBB 2) = 5(82.2) (2.13)

where
10 1 o
(20R? " (((R+¢)OR’

Here we use U to designate the more general case of an unknown function where

L=

(2.14)

the Poisson instead of the Laplace equation is satisfied. Clearly, for inviscid-fluid
applications, one would simply take the source term S = 0.
The boundary conditions in Eqns. (2.2), (2.3), (2.5), (2.6) or (2.7) can be

treated as special cases of the following generalized forms:

a U(,2) + ﬁi% =Fy(®,2), at R=+1 (2.15)
ALU(R,®) + Bﬁﬂa%@ = Hi(R,®), at Z =<1 (2.16)

with all a4, B+, At, and By considered given constants.

Chebyshev-Fourier expansion

In our spectral approach to the solution of Eqn. (2.13), the functions U, S,

Fi, and H; are approximated by truncated Chebyshev-Fourier series of the form:

U(R,®, 2) ¥y o | Una(R)
S(R,®,2) } = > % Sma(R) €™ T,(2), i=+V-1, (2.17)
Fi(®,2) S ftmn
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and

Hy(R,®) = Y hip,(R)eE™, (2.18)

where the Chebyshev polynomials T,(Z) are given by cos [ncos™! Z]. Here M and N
are the number of modes in Fourier and Chebyshev series respectively. Note that by
assumption, we consider Smn, finn, a0d ki, as given, while the sequence Un, are
unknown functions to be solved.

By introducing a Chebyshev-Tau representation (Gottlieb and Orszag, 1977)
to incorporate the boundary conditions (2.16) at Z = %1, and by applying the

recurrence relations for the derivatives of Chebyshev polynomials, we can rewrite:

U i N

— (0 2) imnrd
922 mg_:ﬂ nz_:l Upn (R)e Tn(2), (2.19)
where N2
USH(R) = Y mqUmq(R) + Dmn(R). (2.20)
g=0

Expressions for v,; and Dmn(R) can be derived and their lengthy expressions are
listed in Appendix A. Substitution of the above results (Eqns. 2.19 and 2.20) into the
Poisson equation (2.13) yields:

m? N-2 1
[C - (CR+£)2] Unn(R) + q;) Tngq Unmg(R) = Smn(R) — ;fDmn(R) = 0mn(R)
(2.21)
form——Mt M_ 1 andn=1toN—1.

2

Diagonalization

To avoid solving Eqn. (2.21) with full coupling between m with n, we first
proceed to diagonalize a matrix I consisting of elements 4y,. I is of dimension N —1.

Thus we assume
e 'T'e=A, (2.22)

where A is a diagonal matrix of dimension N — 1 with diagonal elements A,, n =

1,..,N — 1, as the eigenvalues. € is the associate eigenvector matriz, and €' its
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inverse. Next, if we consider the matrices U and ¥ to be defined by elements U,,,
and o,,, we may define correspondingly a matrix U with elements [7,,,,. and ¥ with

elements 6, by the following relations:

U = U€,
. _ s (2.23)

where the superscript T' denotes transpose.
Thus by Eqns. (2.22) and (2.23), Eqn. (2.21) reduces to

m? . 1. - R
[n - (TETeT] () + 252D (R) = G R), (2.24)

or more explicitly
2

Frit C Fre 2 A_"_ m
() + s U R) ¢ [ o

for m = —% to %"— —1,and n =1 to N — 1. The significance of Equn. (2.25), in
comparison with Eqn. (2.21), is that the system of ordinary differential equations

] Unn(R) = (%6mn(R),  (2.25)

in Eqn. (2.25) is uncoupled in m and n. Had we not made this transformation, we
would have to face with the insurmountable task of solving m x n coupled differential

equations.

Solution of ordinary differential equation

To solve the system of ODEs defined in Eqn. (2.25), we may either employ
a finite-difference scheme or a Chebyshev collocation method (Hussaini et al., 1989).
The latter is found to be much more accurate than the former, and is used in acquiring
most of the results in this thesis. The details for both are explained below.

Finite-difference method of solution: If we choose to use a second-
order differencing algorithm over a uniform grid of spacing 2 in the R—direction,
Eqn. (2.25) can be rewritten as

1 1 N 2 A m?2 .
pu+l) 4 | _Z 4 (g0
h2¢? * 2h((CRy +€)] mn [ h2(? s (CR +€)2] "

1 1 N
— rd-1 = 50 ,
+ [h2(2 2R((CR: + f)] mn Omn

(2.26)
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where U®) =2 ..., L -2, represent the discrete values of ﬁmn(R) at R = R with

mn?

RV = —1421 / L. The boundary conditions at R = +1 are also discretized, according
to Eqn. (2.15), as

36- (0) 28- (1) _ B- 2 _ £ -
[a— 2h ] U + h Umn 2k Umn f—mn (2'2‘ )
ﬂ;l- U,Sf;:” 2ﬂ+ U(L -1) + [ 32ﬂh+] U(L) f+mn, (2.28)

where f;mn are elements of matrix Fyx = Fy(e7)~!, with F4 being the matrix con-
taining elements fi ... The systems (Eqns. 2.26 to 2.28) yield a set of linear equations
with a tridiagonal matrix, which can be solved very efficiently by the Thomas’ algo-
rithm (Press et al., 1989).

Spectral-collocation method of solution: A more accurate, although
more laborious, way to solve the ODEs in Eqn. (2.25) is to use a spectral collocation
method with a Chebyshev spacing in the R—direction. We first expand the unknow
function Upnn(R) at collocation points Ry (I =0, ..., L) into a Chebyshev series

Unmn(R1) = 2 a9 T;(R (2.29)

J=0

where Tj(R;) = cos (j cos™ R;). If we assume R; satisfying a Chebyshev spacing in

the R—direction as R; = — cos %1, we have
Unn(Ry) = Za(’) I cos %jl. (2.30)
1=0

Then the first two derivatives of ﬁmn(R) are given by

Ul ..(R) Za,( -1) “‘1 Ism —]l

J=0 mnr L

o L R,T’(R, I*T; R,)

Unn(R) =) _a; )R i (2.31)
J=0 ‘

Substituting Eqns. (2.30) and (2.31) into Eqn. (2.25), we have

ZA('J)G(J) = (Gmn(R)) (2.32)

mn“mn
=0
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where

_ i sin 11 R, ¢ T . A m
Al 152 1) Title2n -
m =T |\ T-rE R+ e T S TRt

2 ) _ j2
1- R12 ’
(2.33)

for I=1,...,L — 1. Using the following relations
T;(1) =1, Tj(—1)=(-1y, Tj(1)=j% and Ti(-1)=(-1)*';%  (2.34)

we may write the boundary conditions in Eqn. (2.16) as

L
> ADDaQ) =5

Jj=0
L - IS
Z: Agrfg)aglt = f+mn (2'35)
j=0
where
AR = a_(-1) + B_(-1)*';? (2.36)
and
AG) = oy + Bif” (2.37)

The above linear systems (Eqns. 2.32 to 2.35) with a full matrix can be solved most
accurately with a direct method, or by an iterative method (Orszag, 1980), which is
efficient, yet less accurate. In the actual implementation, we use the direct method

to assure accuracy.

2.2.2 Treatment of the free-surface conditions

As pointed out earlier, the potential ¢ and wave elevation 7 on the free
surface F are obtained by integrating Eqns. (2.2) and (2.3) respectively. Implicit
difference schemes are used here because of their excellent stability properties (see
e.g. Yeung, 1982). To implement such schemes, the following iterative procedure is

employed
At
T = 1+ 5(8:65" + 4L)

At
orn) = 9 = 5 (nG" +0°). (2-38)
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Here the superscript k£ denotes an index of the time step and p denotes the index
of iterations within a given time step. The iteration process is halted after the pth
iteration when

I¢z€5l - ¢za;l:.11)| S €, (239)

where € is a prescribed tolerance value.
It is worthwhile to notice that the particular implicit free-surface conditions
in Eqns. (2.38) can also be implemented without iterations. By eliminating n**! from

the two equations in Eqns. (2.38), we have

At ?

2
o (B o =t - amt - (B o, (2.40)

which is mixed boundary condition for ¢**! in the form of Eqn. (2.16). Although
the boundary condition in Eqn. (2.40) can be implemented most efficiently in the
present formulation, the iterative schemes in Eqn. (2.38) are useful in the treatment
of free-surface conditions in moving coordinates, which involve tangential derivatives.

In this thesis, Eqn. (2.40) is used throughout in numerical computation.
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Chapter 3

Results for inviscid flow

In this chapter, the spectral Poisson solver developed in Section 2.2 will be

applied to solve the Laplace equation governing an inviscid flow.

3.1 Analytical validations

Before proceeding to some general and more complex problems, it is essential
to establish the accuracy and convergence characteristics of the procedure presented
in Chapter 2. For this purpose, we test the procedure against two analytical solutions

that can be worked out relatively easily.

3.1.1 Solution of Poisson equation

As a first test case, we wish to verify that the Poisson solver for Eqn. (2.13) to
(2.16) can treat any arbitrary function of S accurately and efficient. Here we assume
an analytical form of U(r, 0, z), and evaluate S(r, 6, z) accordinging to Eqn. (2.13).
The boundary conditions (2.15) and (2.16) can be imposed by taking the left-hand
side as given and the right-hand side computed. Then the numerical algorithm for
the solution of U is applied with S, F, and H as given. The numerical solution can

then be compared with the exact solution for different types of boundary conditions.
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For this test, we take U(r,6, z) as

U(r,0,z) = A(r)B(6)C(z), (3.1)

|
B(6) = |cos {W(;ﬂ: - 1)} + sin {7&'(% - 1)}] ,

C(z)= :cos{g z—l)}-}-sin{g(z—l)}] . (3.2)

where

The dimensions of the domain are taken as r; = 1, r, = 10 and d = 2. The right-

hand-side of the Poisson equation S(r,#, z) is thus given

S(r,8,z) = _g@f_@}?{(ﬁ [sin{g(rzf - 1)} + cos {%(% - 1)}]

SN P 2
_ [(r_ Tt ] A(F)B(O)C(2). (3.3)

The boundary conditions considered are taken to be one of the following

three types:

Dirichlet Conditions: a3 = Ax =1, By = By =0,
Neumann Conditions: ay = A =0, By =By =1, (3.4)
Mixed Conditions: ay =Ay =1, B =By =1.

Once the solution for U has been obtained, its pointwise error can be com-
puted over the entire domain Q. In Fig. 3.1, the maximum pointwise error of the
numerical solution in 2, relative to the exact analytical solution, is shown for a range
of grid resolution. In these and later computations, the grid resolution is measured
by the number of radial grids, L, and the number of spectral terms in the circum-
ferential direction, M, and the number of spectral terms in the vertical direction, N.
For the specific case in question, we take L = M = N, with N ranging from 8 to
32. For comparison purpose, the second-order differencing scheme and the spectral

collocation method discussed in Sec. 2.2.1 are both implemented to solve the ODE
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in Eqn. (2.25). Fig. 3.1 shows that the value of the error, Er decreases exponen-
tially as the grid resolution N increases for each of the above three types of boundary
conditions. Specifically, we observe that

Er ~ 107N/No, (3.5)

where Ny is of the order of 20 when the finite-difference scheme is used, and is of
order 1 for the spectral collocation method (before the machine accuracy is reached).
Fig. 3.1 also shows that primary source of error comes from the discrete approximation
in the radial direction. The spectral collocation scheme for solving Eqn. (2.25) yields
errors so small that machine accuracy (14 digits) is reached by using merely L =
M = N = 16.

3.1.2 An axisymmetric Cauchy-Poisson wave problem

To test the accuracy of the algorithm in the handling of wave-related prob-
lems, we solve, as the second test case, an axisymmetric Cauchy-Poisson wave problem
(see e.g. Lamb, 1932). In this type of problems, one first specifies an initial elevation
or velocity of the surface wave, and is then faced with the prediction of the wave
evolution at subsequent time. Here we choose characteristic length and velocity as
L'=riand U' = \/;'r_f, respectively. The governing equations are given in Chapter 2,
with the initial conditions to be specified. Here we assume the initial conditions to
be of an azi-symmetric wave form that occurs between two concentric impermeable
vertical cylinders located at r = r; (S), and at r = r, (X)

Z—f = exp {— [r—(r:i + ro)/2]2} = f(r), att=0 (3.6)
=0, att=0 (3.7)

An analytical solution of the above problem can be derived by the use of
Laplace transform and separation of variables. The details are omitted here. The final

results in terms of velocity potential ¢(r, z,t) and wave elevation n(r,t) are given as

2 oy Ji(kary)
¢(T‘, <, t) - nz;%gn JO(LnT) Nll-(k“n_ri) No(knr)

cosh k,(z + d) sin wyt
cosh k,.d Wn

(3.8)
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e L D(kar)
TI(T’ t) = go + nz=:lgn Jo(kﬂr) Nl(knri)

where J, and N, are the Bessel functions of the first and the second kinds of order

v. ky is the nth zero of the following equation for &

No(knr)| cos wpt, (3.9)

J1(kri) Ny(kro) — Ji(kro)Ny(kri) = 0. (3.10)
The “natural” frequencies w,, satisfy a finite-depth “dispersion relation™:
w? = k, tanh k,d. (3.11)

The coefficients g, in Eqn. (3.9) are given analytically in terms of f(r):

_ Jrerf(r)dr
I =

form=0 (3.12)

and

o rf(r) |Jo(kmr) — 3E=E) No(kpnr)| dr
gm = fr' f( ) [ 0( ) J, :Jl(’f""') 0( 2)] fOI’ m = 13 27 3.... (313)
o7 [Jakmr) ~ RG2S No(kr)] " dr

The numerical solution of this problem was obtained using the spectral
method described in Chapter 2. Here the geometry of the domain is taken to be
ro = 10 and d = 2. The results of the computed wave elevation 7.(r,t) were com-
pared with the corresponding analytical solution 7,(r,t) given by Eqn. (3.9). Excel-
lent agreement was found at every value of non-dimensional time t. Fig. 3.2a shows
the free-surface elevation for one such simulation at ¢ = 100.0. The RMS error in
free-surface elevation as a function of time is defined as

Eraestt) = \/fs {ln(r) ~ 1o 1) [n0}* dS (3.14)

where 7, is the elevation for the initial free-surface pulse, and S the planform area

of the free surface. A plot of Egys(t) versus time-step index n is given in Fig. 3.2b.
For L = 100, M = 24 and N = 24, the error is found to be bounded by 0.5% when a
nondimensional time step At of 0.1 is used, but reduced drastically to a mere 0.05%
if the time step is halved to 0.05. These results lend credence to the accuracy of the

method in solving free-surface problems.
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3.2 A non-axisymmetric Cauchy-Poisson problem

From this section, we will study several inviscid free-surface flow problems of
significant practical interests using the spectral method developed earlier. First, we
solve here a Cauchy-Poisson problem with a non-axisymmetric initial wave elevation
(see Fig. 3.3a). This resembles the situation of waves, excited by a sudden disturbance,

impinging on a circular structure. The initial wave form is taken to be the following:
n(r,0,t =0) = exp {— [rcos§ — (ri + 1) /2] — [rsin 9]2}. (3.15)

The dimensions of domain are chosen to be r, = 10 and d = 10 while the time step
At = 0.1. Grid resolution of L x M x N = 72 x 128 x 24 is used.

Because of the reflection of waves from the outer wall and their interference
with the inner cylinder, the wave surface evolves in a complicated manner. Figs. 3.3
and 3.4 reveal some of these interaction features at 12 instants of time. The outward-
moving “ring waves” of the pulse (Fig. 3.3c) first hit the outer cylinder and rebound,
interestingly, almost as a plane wave system (Figs. 3.3e and f). The inward-moving
ring waves are diffracted around the inner cylinder and eventually bounce off the far
side of the outer cylinder to interact with the “plane waves” which somewhat encircle
around the inner cylinder to reach the far side (Figs. 3.4a and b). When all these
waves meet at the far end, they evolve into waves of much shorter lengths, moving
at much lower spatial velocities (Figs. 3.4c to f). All these flow features are well
captured by a radial grid dimension of merely 72 points.

The horizontal force F, on the cylinder and overturning moment M, are
computed using Eqns. (2.8) and (2.9), and their time histories are shown is Fig. 3.5.
It is interesting to notice that the maximum force does not occur during the initial
wave impingement, but appears around ¢ = 65.0, due to the wave “focusing effect”
of the outer wall. This is confirmed by the wave perspective plot in Fig. 3.4b, where
a large wave elevation is observed at the far side of the cylinder.

It is important to validate the accuracy of the solution. As a measure of the
accuracy of this type of computation, we will demonstrate that the flow retains the

same total energy as the initial wave pulse. We define the following energy quantities
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following Yeung (1982): the total energy (T.E.) in the fluid domain as the sum of its
kinetic and potential parts

T.E.(t) = K.E.(t) + P.E.(¢)

1 1
= = d6.dS / Zn2dS
SUFUZUB 2¢¢ + F 27’

- /F %¢¢,,ds+ /; %nzds (3.16)

where the contributions to the first integral from S, ¥ and B vanish because ¢, = 0.
Clearly, in the absence of any energy source, T.E. must stay constant. Fig. 3.6 shows
that the error in the total energy is no more than 0.2% of the the initial potential
energy of the wave form even after 10,000 steps of simulation. Of course, by the
principle of equal energy distribution, one observes that P.E. and K.E. each hovers
around and converges to the value of 0.5. This confirms that the wave motion would

never vanish completely, which is to be expected in the absence of viscosity.

3.3 Flow around a swaying cylinder: A radiation

problem

In this section, we solve a wave radiation problem, in which the otherwise
still fluid is disturbed by a body undergoing forced motion. Radiation problem and
diffraction problem (to be discussed in Section 3.4) are key elements in the hydrody-
namic theory of body motion in waves.

Consider a vertical cylinder of radius r; moving with periodic velocity U’(¢)
along the x-axis, starting from ¢’ = 0 in otherwise still water of depth d’. This is a
well-known problem in hydrodynamics for which a closed form solution for the case of
a laterally unbounded fluid can be obtained (Yeung, 1981). The hydrodynamic prop-
erties of the circular cylinder is characterized by force coefficients that are dependent
on the frequency of the oscillation.

We choose to non-dimensionalize fluid quantities by body radius a’, gravita-
tional acceleration ¢’ and fluid density p'. Specifically, we let non-dimensional velocity
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Computational wy\/ri/g =7/[4 w\/;/g =7/2
Methods P/ p7rid | Azzfwpnrid || veo/prrid | Azz[wpnrid

Yeung (1981) 0.40159 0.45051 0.46771 0.04650
Present Method 0.41047 0.44689 0.47149 0.04198

Table 3.1: Comparison of added mass and damping coefficient computed by the

present method and those in Yeung (1981).

V(t) on the right-hand side of Eqn. (2.4) be given by:

(3.17)

t
V(t):{ 0 when t < 0

awsin (wt) whent >0

where a denotes the amplitude of the body motion, and w the angular frequency. If
a steady state solution is reached, the force can be simply expressed in terms of an
added mass coefficient y,, and a damping coefficient A., defined below (Wehausen
and Laitone, 1960):

dUu(t)

Folt) = —pes—py = = AU (t) (3.18)

The solution of this problem is sought by choosing r, = 30 for two fre-
quencies of oscillation w = 7/2 and 7/4. Here the frequency of oscillation is non-
dimensionalized by \/g'T'Z Fig. 3.7 shows the free-surface elevation for a complete
cycle of body motion at one-quarter period intervals for a = 0.055 and w = 7 /2 after
the body has oscillated for 9 periods. The hydrodynamic force acting on the cylinder
for this case is shown in Fig. 3.8 as a function of time. It is evident that a harmonic
steady state is reached after the body has undergone only 2 or 3 periods.

From the force time history, it is possible to evaluate the added-mass and
damping coefficients and compare them with known analytical results (Yeung, 1981).
Table 1 shows such a comparison for a grid density of L = 150, M = 48, and N = 24,
when solved as a transient three-dimensional problem. The agreement is seen to be
excellent since no symmetry assumptions are made. The envelope of the force curve
in Fig. 3.8 confirms the method has excellent stability characteristics.
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3.4 Cylinder in progressive wave: A second-order
diffraction problem

In this section, we study a wave diffraction problem, which concerns the flow
around a body held stationary in incoming waves. When the free-surface boundary
conditions are linearized, the wave diffraction by a vertical cylinder was first solved by
Havelock (1940) for infinite water depth, and extended by McCamy and Fuch (1954)
to the case of finite water depth. Development of the tension leg platforms aroused the
interest for the second-order wave diffraction theory. The so-called “springing” loads
predicted by such theory are important for the fatigue life of marine structures. After
the pioneering works of Lighthill (1979) and Molin (1979), second-order diffraction
loads on vertical cylinders were given by Molin and Marion (1986).

Consider a vertical cylinder of radius r; and depth of d’ standing in a pro-
gressive plane wave system of frequency w’ and amplitude A’. Again, we choose to
non-dimensionalize fluid quantities by cylinder radius r{, gravitational acceleration g’
and fluid density p'.

Under the assumption of incompressible fluid and irrotational flow, the first

order and second order potentials, ¢(!) and ¢(1), both satisfy the Laplace equation:
Vg =, (3.19)

and
V2@ =o. (3.20)

Assuming moderate wave heights, we derive free-surface conditions in Appendix D

as:
O(e):
0~ g 0, (221
2 + ¢ = 0; (3.22)
O(e?)
= g = g~ L0 g S g (3
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1 2 1 2 2
n® 4 g = _p ) _ > [¢$1) " r_2¢gl) + g ] =D®. (324

Following Chapter 2, we may derive mixed boundary conditions for ¢(!) and ¢(?,
similar to Eqn. (2.40):

2 2
e N G (3.25)

2 2
6O 1 (5 607 = g - st (B g 4

t t
(G0 [0 + 0% = (SHE*+ + K] (3.26)
where k again denotes time step.
The incident wave system in this case is a second-order Stokes wave train,

which is specified on the outer boundary r = r, using its velocity potentials (see Mei,

1989),
¢ = %wm(km—wt), at T =r,cosé,
2 2
¢? = 3A8 s COShizﬁS~k: d) sin 2(kz — wt), at z =r,cosé. (3.27)
s

To solve this second-order diffraction problem as a time dependent problem, we also

need to specify potentials and their vertical derivatives on the free surface as initial

conditions
Aw cosh kd
) _ :
¢ (1‘, Ba 01 0) k sinh kd s k.’l,‘,
¢{!(r,8,0,0) = Awsin kz,
3A%w cosh 2kd (3.28)
(2) . .
¢ (r,6,0,0) = s i 2kz,
3A%wk sinh 2kd
(2) 0) = ks,
¢z (7’, 8301 ) 4 S' ] ] kd sin T

These initial conditions in Eqn. (3.28) are consistent with boundary conditions given
in Eqn. (3.27); both correspond to a regular second-order Stokes wave train in the
z—direction.

The wave diffraction for both solutions are obtained by imposing the no-leak

body conditions. However, numerical tests show that if these body conditions were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com



28

abruptly imposed at ¢t = 0, a splash would occur near the body surface and plague the
numerical solution. In order to avoid this difficulty, we use the following Neumann

conditions, which correspond to a gradual imposition of the body surface in the wave

field:
o) = f(t)Awﬂsj—l(i%{;—d)- cos (kz — wt) cos 6, at £ =r;cos ¥,
2, 2
¢® = f(t) 3A4wk cosﬁﬁzk: 9) cos2(kz — wt)cosf, at z =r;cos8, (3.29)

where f(t) is defined by

F(t) = { : [1 + cos (%)] when t < T}, (3.30)

when t > T,
with T, being a modulation time.
After the velocity potentials ¢(!) and ¢(®) are solved, the r—forces acting
on the body can be computed using the Bernoulli equation (Molin, 1979). The final

expressions for non-dimensional first-order force F, and second-order force F3, are

given as
F, = /s —¢®,n,dS, (3.31)
and
Fao = F{Y + FE, (352
where F.g) depends on ¢(),
FM = /S -—%(V¢(1))2n,d$'+ /F %((;s(”,)’n,dr, (3.33)
while
F® = /s —¢? n.dS (3.34)

depends on ¢(?). Here S denotes the mean wetted body surface, and I the intersection
of S at 2 =0.

3.4.1 A test case

Before proceeding to the wave diffraction problem, we choose to check the

procedure presented above by a test problem, in which the inner cylinder is assumed
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to be a perfectly permeable surface, instead of a solid one. To do that, we hold f(¢) in
Eqn. (3.29) to be unity at all time. Eqn. (3.27) is imposed as a boundary condition on
the outer boundary, and initial conditions in Eqn. (3.28) are used on free surface. It
is expected that, in this test case, a second-order Stokes wave as given in Eqn. (3.27)
should propagate through the domain without being disturbed.

For this test, we choose the domain sizes to be r, = 11 and d = 2. The wave
amplitude A is taken to be 0.3, and wave number % is set to be 1.0, which corresponds
to a wave period of T' = 6.39934. Grid resolution of L x M X N = 96 x 64 x 16 and a
time step of At = 0.1 are used. The numerical results are presented in Fig. 3.9, which
shows the propagation of the first and second-order waves along the r—axis for ¢t = 0
to 2.4. The results between £ = —1 and 1 are wave elevations on the cylinder surface
projected into the vertical plane of symmetry y = 0. No wave modulation is visible
from the plot. A further look at the numerical date confirms that the maximum
difference of total wave elevation (up to 2nd order) is less than 0.1% in first five wave

periods.

3.4.2 Diffraction about a cylinder

Numerical results presented here are obtained by a mesh size of Lx M X N =
72x128x 16, and a time step At = 0.05 is used. The dimensions of the computational
domain are set to be r, = 16 and d = 2. The incident wave is a second-order Stokes
wave train with A = 0.3 and k£ = 1.0, which again corresponds to a wave period of
T = 6.39934. The modulation time T}, in Eqn. (3.30) is set equal to wave period T.

Free-surface elevations and runups

Fig. 3.10 shows a perspective view of free-surface elevation to second order
at a large time ¢ = 32.00. Complex wave patterns are observed near the cylinder.
Fig. 3.11 presents the development of the wave profiles and wave runup with time to
first and second orders. The wave profiles in the vertical plane of symmetry y = 0 are
shown on both upstream side (zr < —1) and downstream side (z > 1) of the cylinder

while the wave runup on half of the cylinder surface (—7 < @ < =) are plotted between
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—1 < z < 1. The flow immediately adjacent to the cylinder appears to repeat itself
soon after the first cycle, while the flow further away from the cylinder takes longer
time to reach a steady state. The scattered waves of first and second orders propagate
steadily away from the cylinder at their corresponding group velocities. It is also
observed from Fig. 3.11 that the second-order effects contribute significantly to the

total wave runup on the cylinder .

Velocity vectors

Figs. 3.12 to 3.14 show velocity vectors in the vertical plane of symmetry
for six instants of time. Specifically, Fig. 3.12 corresponds the initial modulation
period (¢t < Tp,), and Figs. 3.13 and 3.14 correspond to four instants of time during a
steady state. The velocity vectors near the cylinder clearly indicate that the no-leak
boundary condition is satisfied in all cases except in Fig. 3.12a, where the cylinder has
a permeability of 0.5. During the steady state (Figs. 3.13 and 3.14), velocity fields to
first and second orders differ substantially, especially on the downstream side of the
cylinder.

Wave forces

The second-order horizontal (z— direction) forces on the cylinder are com-
puted using Eqns. (3.31) to (3.34). The time history of these forces are plotted in
Fig. 3.15. It is evident from this plot that a harmonic state has been reached. In
this case, the maximum horizontal force based on the second-order theory is about
6% larger than that predicted by the linear theory. The second-order component Fz(;)

has a non-zero mean value, representing a drift force.
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Figure 3.1: Logarithmic maximum pointwise errors vs. grid resolution for various
boundary conditions (FD: Finite difference method; SC: Spectral collocation method.
Case 1: Dirichlet Conditions on R and Z directions; Case 2: Neumann Conditions
on R and Dirichlet on Z; Case 3: Mixed Conditions on R and Z).
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Figure 3.2: Free-surface elevation at ¢ = 100.0 (top) and the root mean square of errors
of free-surface elevation as a function of time-steps (bottom) in the axisymmetric

Cauchy-Poisson wave problem.
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Figure 3.3: Instantaneous free-surface elevation plots for the Cauchy-Poisson wave
problem, L, M, N representing resolution in the radial, circumferential, and vertical

directions.
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Figure 3.4: Instantaneous free-surface elevation plots for the Cauchy-Poisson wave
problem, L, M, N representing resolution in the radial, circumferential, and vertical

directions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



35

1.0 — T T T T T T T T

e S s s ol - R R

e e e

04 o geodiog : bey feeeg
= : A: : : H

02 -t gk /‘\éi\ -ﬂ;f‘\fxé‘\i\f
0.0 uv 'M AW\] \ u\.: A\] -i

Force & Moment

0.8 i i I i i i i i i
0 20 40 60 80 100 120 140 160 180 200
Time

1.0 — T T T T T T T I
0.8 [Fom s Fy My e
0.6 [

0.4 p-oip TR : e :
o2 Lol bl
02 [V \V\[WJVVU” ...... "\1 \ lE lV"M

-0.4 : : ; : : e :
-0.6 : i i e ; —
0.8 i i i i i i i f i
800 820 840 860 880 _IQOO 920 940 960 980 1000
ime

Force & Moment

Figure 3.5: Horizontal force and overturning moment on the cylinder.
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Figure 3.6: Energy balance in the Cauchy-Poisson wave problem.
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(2) (b)

(c) (d)

Figure 3.7: Instantaneous free-surface elevation plots for the swaying cylinder problem
in one cycle of motion with w = /2, and t = 32.5,35.0,37.5 and 40.0.
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Figure 3.8: Horizontal force on the cylinder as a function of time.
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Figure 3.10: Fully developed wave field to second order at ¢ = 32.00 for the second-

order wave diffraction problem. Arrow represents direction of wave propagation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



41

30 T T T T T 1 ! L
28 _______. 1st order |
26-____ 2nd order |

24 e
e T
) e ————— e g N S ——
0 ———— e ———
= ———————
- T
/—\——/‘ > W
12 W_____'\._.

19 R%ﬁw_ﬂ'
— —
8 w-\’- pomsms— o ———— ]

>>S

9 -8-7 -6 -5-4-3-2-101 2 3 45 6 7 89
X o/ X
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Figure 3.12: Velocity Vectors and free-surface elevations in the vertical plane of sym-
metry during modulation (¢ < T,,). Top: solution to first order; bottom: solution to
second order. (a) Permeability f(t) = 0.5 at ¢t = T,,/2; (b) Permeability f(¢) =0 at
t = Tm.
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Figure 3.15: Time history of first and second-order horizontal forces on the cylinder.
A: Fy.; B: F-g); C: Fg); D: F5, = 2(;) + Fz(f); E: Fi; + Fop.
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Chapter 4

Spectral method for a viscous fluid

The theoretical background for solving transient three-dimensional free-
surface viscous flow will be described in this chapter. Following the format in Chapter
2, we will present its mathematical formulation first, and describe numerical treat-

ment the second.

4.1 Problem formulation

4.1.1 Field equations

Consider the same cylindrical coordinate system (r, 8, z) described in Chap-
ter 2 (see Fig. 2.1). If again we take U’ as a characteristic velocity, r! as a characteristic
length, the non-dimensional Navier-Stokes equations for incompressible viscous flow
in cylindrical coordinates can be written as

E-Fug-i-;%-i-waz r Re

du du vOu du v? 1 [V2 u 2 av] _3_P

ot we — — = o

@4_ 9v  vdv dv wv 1 2y _ Y 29u|l 18P
ot "Vor "ro0 Y8z T+ Re

“F T a0
ow Ow vow ow 1 r_, oP
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Here, u, v and w are velocity components in the radial r, circumferential 8, and
vertical z directions, respectively, and Re is a Reynolds number defined by U'r!///
with +/ being kinematic viscosity. V2 = & +12 + 12+ % in Eqn. (4.1) is
the Laplacian operator in cylindrical coordinates. Eqn. (4.1) is complemented by the
continuity equation

19(ru)  19v  dw

r Or +;%+E=O' (4.2)

The quantity P represents the non-dimensional dynamic pressure, which is related to

the total pressure p by

V-4
ﬁi’a
where F, is a Froude number defined by U’/,/g'r;. Here P and p are both non-
dimensionalized by p'U’? with p being the density of fluid.

P=p+ (4.3)

4.1.2 Boundary conditions

Next, the boundary conditions that govern the viscous-wave problem are
defined:
On the body S, the following no-slip conditions are used:

u=0, v=0, w=0, atr=r;. (4.4)

On the free surface F, the boundary conditions can be linearized from the ex-
act kinematic and stress-continuity relations (see e.g., Wehausen and Laitone, 1960).

The linearized dynamic boundary conditions are

o o,
9z  dr
n 2 0w _ o
—P+F—3+Ega—0, at z —0, (45)
% 100
9z 'rds

They provide the appropriate boundary conditions for velocities and pressure. The
kinematic condition is

%tz = w, at 2 =0, (4.6)
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which determines the free-surface elevation . Note the boundary conditions in
Eqns. (4.5) and (4.6) are satisfied on the mean free-surface z = 0, in order to be
consistent with the linearization procedure.

It is worthwhile to point out that the general free-surface boundary condi-
tions in Eqns. (4.5) and (4.6) can be simplified if one considers the Froude number
to be sufficiently low so that Fr?/Re < 1 or U’ < ri®¢’/v'. This assumption yields
the so called “free-slip boundary condition”

gz—z‘-=0, %:0, w=0, at z = 0. (4.7)

Physically, this represents a flow symmetry of the velocity field about z = 0,
with no shear stress and no wave elevation at z = 0.

On the outer boundary %, it is assumed in the present work that wave
disturbance are vanishingly small at £ for a sufficiently long duration of time. We
may impose

u=0, v=0, w=0, and P=0, (4.8)

This approximation is asymptotically correct for a boundary sufficiently far away.

Treatment of the free-surface-body contact lines is another important issue,
and the development of proper boundary conditions continues to be an active field
of research. Yet, no definitive model has evolved. Nevertheless, several empirical
remedies have been proposed in order to avoid the contact-line singularity problem.
The most common one is the slippage model which allows a slip proportional to the
shear stress. Huh and Mason (1977) have proposed a local-slippage model according
to which it is assumed that fluid slips freely (the shear stress being zero) over a small
length at the contact line.

The treatment applied in this work is based on Huh and Mason’s model.
On the contact line, for shear-stress to vanish,

dw

—a—;=0, a,tr=landz=0- (4'9)

We use Eqn. (4.9) to determine velocity w at the contact line. Velocities u and v are

obtained from the no-slip condition.
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4.1.3 Calculation of force and moment

After the above hydrodynamic problem for u, v, w and P is solved, the non-
dimensional forces and moment acting on the circular cylinder S can be obtained by

integrating the stress using the constitutive relations

F, =-/s [Ter cos @ — Trgsin 0] dS

° = i 2x Ju dv .
_—-r,-/_ddz/O d9Pcos€+§;/;dz/0 dé [ZE‘-COSB—Esma ,

A:me
T 0 27 6w
—ELkowﬁ’

M, =/.s [7rr cos 8 — Trg sin 6] 2dS

0 2 .0 2
= —-r;/ zdz/ " dBP cos b + lj zdz/ "6 [22% cos6 — P sing| |
-d 0 Re J-4a ( or or
(4.10)
where 7;; is the stress tensor. These forces are non-dimensionalized here by p'U’*r'?,
moment by p’ U’zr'?. Note that F; and M, consist of two double integrals, one due

to pressure and the other due to viscous stress.

4.2 A spectral method of solution

The Numerical solution for Eqns. (4.1) and (4.2) are sought at each time
step t = kAL, (k = 1,2...), for a given time increment At. Consider the following
difference schemes of Eqns. (4.1) and (4.2):

i(u""’1 —uf)=Q [—(u -V)u +

Elgvzu] — V Pk (4.11)

V.uftl =, (4.12)

where Q is a suitable difference operator (to be defined in Section 4.2.1), and V? is
the differential operator inside the brackets of Eqn. (4.1). The numerical algorithm
for solving Eqns. (4.11) and (4.12) is given as follows. We first introduce an auxiliary
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velocity field 4, satisfying

1 - k [ 1 — 2 ]
—(a - = —(u- —V .
At(u w)=Q|—(u-Vu+ Ak (4.13)
and we subtract Eqn. (4.13) from Eqn. (4.11) to obtain
é(uk“ — i) = —VPkL, (4.14)

If we apply divergence operator onto Eqn. (4.14), we obtain a Poisson equation at
each discrete time instant for P*+!
VZpktt = iv.ﬁ, (4.15)

Note that Eqn. (4.12) has been used to derive Eqn. (4.15); thus mass conservation is
assured.

After the P¥*! has been calculated from Eqn. (4.15), it is substituted into
Eqn. (4.14) to obtain u**!. This formulation is based on Chorin’s method (Chorin,
1968), and was implemented by Yeung and Ananthakrishnan (1992) with additional
boundary conditions arisen from the body and the free surface.

In summary, we first evaluate an intermediate auxiliary velocity field using
Eqn (4.13). The pressure field is solved next based on Eqn. (4.15). A pressure cor-
rection step concludes the procedure using Eqn. (4.14). The detailed implementation
of this procedure will be presented in the next three sections.

4.2.1 Calculation of auxiliary velocity

The difference operator Q in Eqn. (4.13) requires elaboration. The idea is
similar to Goda (1977). To calculate the auxiliary velocity @, two additional auxiliary

velocities u* and u™* are introduced into Eqn. (4.13) to simplify the computations

For u: 1 ) 4 .
A — k) = —pka® L [ 1. U
At(u u ) uu, + Re [urr + rur 7'2]’
1 == = v- Py vkz 1 1 % 2 k
E(u —-u") = —Tua + e + Re r—zu“ - ,._zvf’]’ (4.16)
1 1
E(‘& - u“) = —w"ti, + E[ﬁZZ];
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For v: ) ) 1 .
™ — k — — k, = = [y Ta* v__
At(v v ) u vr + Re[vrr + rvr 7‘2]’
1, .. . v. .. w1 1 2, -
A—t(v -V )= —‘—r‘Ug - - + E[r_z‘vgg + ﬁﬂg], (4‘1‘)
1 a =n e A 1 A
ZE(U -V ) =-w v, + Ecj[vz:];
For w: 1 L 1
yriti w¥) = —utw] + E[w:r + ;_'w:]’
1 =% = v‘ - 1 1 £ 2
N\ T )= W + a[‘ﬁwao ] (4.18)
1 - _wy - A 1 a
E(w —w™) = —w™w, + e [w..].

It is worthwhile to note that these variables do not require extra storage, because
u” and u™ can share the same storage with . If we introduce the following four

difference operators Q., @,, Q¢ and Q. as
0 1.0% 19 1

I=— — et | c— -— c—— — c——
Q= Y or TRe'orz T ror ,.2]’

0 1.82 10
— — k— —— | — — c—
Qr=—u 8r+Re[ar2+rar]’ (4.19)
o T2, 11 '
=777 06 " Re‘62or2”
- 1 0%
Q= v Relpab
Eqns. (4.16) to (4.17) can be rewritten as
For u: 1
—_ - _ k = /I _ =
G —u) = Qe
1
_A_t.(utt _ u-) = Qoutt + Allc’ (4.20)
1 .. . .
Kz(u —u™) = Q.4;
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For o: 1
(" —v) = Qo
-Al—t(v" — ") = Qv + AS, (4.21)
1 . .
E(v - v™) = Q.0;
For w: L
- v =g,
le W™ —w") = Qew™, (4.22)
) R
Z—t-(w - w"™) = Q.w,

where Af are A% are known functions defined by:

k2 k, k
k_YV 2 & k_ _ 2
Ar= r  Rer?'® A = r + Rer?
The scheme in Eqns. (4.16) - (4.18) is a variation of the ADI method (see e.g. Sod,

1985). Consistency of the above procedure can be easily shown. If we take Eqn. (4.20)

uf. (4.23)

for example, it can be rewritten as:

u = (1—AtQ!)'uF,

u™ = (1— AtQp) [u" + AtAf], (4.24)
= (1-AtQ,) u™.

[~

Elimination of the intermediate velocities u* and u** yields

i@ = (1-AtQ) (1 - AtQe) " [(1 - AtQ,)  uF + AtA¥]

4.25
= (1+ AtQ! + AtQ + AtQ, )u* + AtA* + O(A#?) (4.25)

It is evident that the present procedure is an approximation of Eqn. (4.13).

Note that Eqns. (4.16) - (4.18) are of implicit forms for each intermediate
velocity u*, u** and d. Thus, by von Neumann’s linear stability theory (see e.g.
Sod, 1985), each of these schemes is unconditionally stable, assuming that the each
coefficient of nonlinear terms is a local constant. Although each of Eqns. (4.16) -
(4.18) is independently stable, the total stability condition of Eqns. (4.16) - (4.18)
and Eqn. (4.14) is not strictly established.
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The above Eqns. (4.16)-(4.18) can be further rearranged and regrouped into
the following three sets of ordinary differential equations (ODEs):

For u*: 3 1 R R
= - ky .= = __e_ - _ __e- k
U, + (T' Reu )ur + ( r2 At)u Atu ’
. 1 By e 1 Re, ., Re ,
v, + (; — Reu™)v; + (—;3 A T (4.26)
Re Re
- > k Ty — k
w;, + ( Reu®)w; i vl
For u*=: R Rer?
ugg — Rerviuy™ — gu" = - Ae: u® — RerzA’f,
R Rer?
vgg — Rervivg™ — ﬁv" = — Z: v* - RerzA;‘, (4.27)
- ®_ Rer % Rer2 *
wge — Rerv*wy il ek
For u:
. Rew™i Reﬁ _ Re |
Yz ew s At T A
. Re ., R
Uz — Rew™ 0, — A= —K‘%v", (4.28)
. Rew™ i Re . Re
zz = T W= oW
v e At At

Eqns. (4.26) and (4.28) are ODEs in radial r and vertical z directions respec-
tively, and are solved by a Chebyshev spectral collocation method, with Chebyshev
grid spacings in these two directions (see Appendix B.2). Eqns. (4.27) are ODEs in
circumferential § direction, and are solved by Fourier spectral collocation method in
a uniform grid spacing (see Appendix B.2). It is worthwhile to emphasize that the
auxiliary velocities u*, u™ and 4 are not physical and the boundary conditions for
solving them need to be derived with care and consistency. The boundary conditions

for auxiliary velocities and pressure are developed next for various types of surfaces.

4.2.2 Implementation of boundary conditions

To illustrate the treatment of the velocity boundary condition, we take the

case of u*, u™ and ¢ in Eqn. (4.16) as an example. The boundary conditions for
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solving u™, u™ and @ in Eqns. (4.26) to (4.28) can be formally written as

= uk+1 _ At(Qauk"'l + All:-&—l + Qzuk“ _ g,P"“),
™ =kt — At(Q,uk'H — g,,P"“), (4.29)
4 =ubtl - AY(—G, P,

where G, denotes the gradient difference operator in r direction. Each of Eqns. (4.29)
above is derived by subtracting each of Eqns. (4.16) from the u—component equa-
tion in Eqn. (4.11). In Eqns. (4.29), if either P*¥*! or u**! are not known, we can
replace P¥+! by P* and uF+! by u* respectively. Specifically, the first equation of
Eqns. (4.29) provides boundary conditions for u* (in the first equation of Eqns. 4.26)
at r = r; and r,; the third equation of Eqns. (4.29) yields boundary conditions for
(in the first equation of Eqns. 4.28) at z = —d and 0. Since u** (in the first equation
of Eqns. 4.27) is solved in the periodic circumferential § direction; no boundary con-
ditions is thus needed, the second equation of Eqns. (4.29) can be dropped. Thus, in

summary, we have

ut = uf — At(Qeur + AF + Q.u* — G, P¥), at r=r;orr,
@ = uf - At(-G.PF), at z=—dor0.

(4.30)

The boundary conditions for v— and w— components can be derived similarly and

are given by

vt = ok — At(ng't + A'z‘ + Q. vk — goP"), at r=r; or r,, (4.31)
b = o* — At(—GeP¥), at z=—d or 0,
and
w* = w* — AH(Qew* + Q.uwF — G.P¥), at r=r;orr,,
(4.32)
W = w* — A(—G.P¥), at z=—dor0,

where Gy and G., similarly, denote gradient difference operators in § and z directions.
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Free-Slip or No-Slip Surfaces

For the case of no-slip wall or free-slip boundary, the boundary conditions in
Eqns. (4.30) to (4.32) can be further simplified. In normal and tangential coordinates,

such conditions fall into one of the following forms: (a) The no-slip wall condition
Up = U =Up =0, (4.33)

or (b) The free-slip boundary condition

un =0, %’% = %"nﬁ =0, (4.34)

where u,, u, and u,, denote the velocity components along the normal (n) and two
tangential (7, and 7) directions of the boundary surface, respectively.

For numerical implementation of the above two boundary conditions (Eqns.
4.33 and 4.34), we set the normal component of the auxiliary velocity i, to be the

same as the actual normal velocity u,**!

U = uptL, (4.35)

Then Eqn. (4.35) together with Eqn. (4.14) implies the following homogeneous Neu-
mann condition for P**! on these boundaries:

gpk+1
on

Using Eqns. (4.33), (4.34) and (4.36), we reduce the general boundary con-
ditions for auxiliary velocities u* and a (Eqns. 4.30 to 4.32) to

=0. (4.36)

. . 19P* . Pk
u* =0, vt = At;W’ w* = At—B?’ at r=r7r; or r,,
. oP* . 1 9Pk .
= At 5 U= At;W’ w =0, at z=—d or 0, (4.37)
for the case of no-slip wall, and
av* OAk dw*
- ‘4’c = — =2 = =r; o
u AtA7, £ At 3 Em 0, at r=r; or r,,
ou 9 .
-3—2-—0, 5—0, w =0, at z=—d or 0, (4.38)

for the case of free-slip wall.
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Free-surface conditions

The situation is somewhat more involved for the case of a free-surface bound-
ary. Thus we choose first to illustrate its implementation by a simple one-step explicit
time-marching scheme. The boundary conditions at z = 0 in Eqns. (4.30) to (4.32) are
used in their original forms as Dirichlet conditions for solving the ODEs for the aux-
iliary velocities in Eqn. (4.28). The second equation of Eqns. (4.5) yields a Dirichlet

boundary condition for solving the Poisson equation for pressure in Eqn. (4.15)

n* 2 ouw*
k: —
Pr+l = F2 + 25 at z =0. (4.39)

The stress relation in Eqn. (4.5) based on current values are used to update values of

velocity on free surface

awk-i-l Re K+l ﬂk
: k
outtt _ ow “, (4.40)
9z ar
b 1 dwrt! 0
9z~ r o =0

The kinematic free-surface condition in Eqn. (4.6) is integrated to update the free-
surface elevation 7
n*+ = pf 4 Atw*tt (4.41)

If it is found that the above explicit treatment of the free-surface conditions
does not guarantee required accuracy, we will use the following two-step predictor-
corrector type scheme:

Predictor Step:

PP 2T gt z=0. (4.42)
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dwtT  Re ol
il C F_f)’
auk+1 — _0w"+1 : (4.43)
0z r
JuFFt 19w+t 0
= - y t 2=
0z r 06 a
7" = p* 4 At (4.44)
Corrector Step:
BT 9 gy F+l
Pl t == atz=o (4.43)
Suwk+ _Re (PH _ ,,m)
9z 2 F2 "
duttt _ _aw"“, (4.46)
0z or
Svktl 1 Jwr+! 0
— e —— t = VU.
ER r a9 F
At, =
T)k+1 — nk + _(wk+l + wk+1). (4.47)

2

Note that this predictor-corrector algorithm requires solution of the Poisson

equation twice at each instant of time.

4.2.3 Solution of the pressure equation

In cylindrical coordinates, Eqn. (4.15) can be rewritten more explicitly as

1

ViP=— =
P=

19(ra) 185 3%

ror TraetEa|

(4.48)

subject to a Neumann condition (Eqn. 4.36 on a slip or a no-slip boundary surface) or
a Dirichlet condition (Eqn. 4.39 for the case of a free surface). This fits precisely into
a form that was discussed in Chapter 2, and can be treated by the spectral method
detailed therein.
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Chapter 5

Results for viscous flow

In this chapter, we will apply the numerical method presented in the previous
chapter to several fluid dynamics problems involving a vertical cylinder in a viscous
fluid. These problems include: (1) cylindrical cavity flows, (2) a Cauchy-Poisson wave
problem for viscous fluid, (3) a sheared current past cylinder under a free-slip surface,
and (4) a uniform current past a cylinder under a free surface. Test cases for each

will also be presented when appropriate.

5.1 Rotating cylinder in a viscous fluid: A test

As a test of the method’s ability to handle large-time simulations, we solve
a cylindrical version of the Stokes’s second problem for a viscous flow driven by an
oscillating wall. Consider in Fig. 2.1, a solid cylinder S of radius r} rotating back and
forth about its axis z with angular frequency w’ in an initially still and unbounded
viscous fluid. If we choose to non-dimensionalize the variables of the problem by r!
and «’, the non-dimensional circumferential velocity at the cylinder surface is specified

as

(1,4) 0 when ¢t < 0 (5.1)
v(1,¢t) = .
sin (¢) when t > 0.

The momentum equation in the @ direction governing such a flow can be written as

v 1 ,0% 10v v

% "R Tror 7 (52)
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where the Reynolds number Re is defined as wr?/v. A steady-state solution of the

above equation is of the form
v(r,t) = Im[f(r)ei']. (5.3)
where i = v/—1 and ¢ is nondimensionalized by 1/w. It is not difficult to derive that
_ Ki(41V/Rer)
Ki(*3VRe)’
where K; denotes the first order modified Bessel function of the second kind.
To test our code, we solve this problem as a fully three-dimensional problem.
Specifically, free-slip boundary conditions (Eqn. 4.34) are used on the top surface F,
the bottom surface B and the far-field boundary ¥ . The far-field boundary T is

taken to be at a distance of 10. Grid resolution of L = 48, M = 16 and N = 24, and
Reynolds number Re = 100 are chosen for this study. Fig. 5.1 shows a sample of the

f(r) (5.4)

velocity profiles v(r,t) at eight instants of time during the first period of oscillation
and the corresponding profile during the 7th cycle, which may be taken as the steady-
state limit. Numerical results show that the transients are only significant during the
first couple of cycles of oscillation. To establish the accuracy of our numerical solution,
we further plot in Fig. 5.2 a comparison of the real and imaginary parts of function

f(r) (Eqn. 5.3) with the numerical values. Excellent agreement is observed.

5.2 Flows in a cylindrical cavity

In this section, we proceed to solve a series of cylindrical cavity flow prob-
lems, in which the fluid is entirely enclosed by solid boundaries, and the flow is
driven by an impulsively-started sliding motion of one of the boundaries. The two-
dimensional version of this problem is well known (see e.g. Sherman, 1990). It has
often served as a testing ground for competing numerical methods, the objective of
the competition being to prove that one’s favorite method reveals accurately more
realistic details of the flow than other methods with comparable computation efforts.
There is little literature for the (three-dimensional) cylindrical cavity case, however.
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5.2.1 A Cavity driven by the steady motion of wall

Imagine a three-dimensional flow enclosed in a cylindrical region (see Fig. 2.1)
where boundaries F, B and S are stationary walls, while the remaining boundary T
slides upwards with a constant speed W starting at ¢ = 0. To solve this problem, we
first non-dimensionalize the flow parameters by the following natural choice of pri-
mary variables: the height of domain d’ and wall velocity W’. The Reynolds number
Re is defined by W'd’/v'. No-slip boundary conditions (Eqn. 4.33) are applied at all
these boundaries.

The possibility of a steady-state solution in this problem is investigated.
The three-dimensional code was run for ¢ as large as 4.0, using a time step At = 0.01,
for a grid resolution of L x M x N = 24 x 16 x 24 until less than 0.01 percentage
change in the velocity field was observed. It was found that steady-state solution is
approached as early as ¢t = 3.0 for the case of Re = 200, and a somewhat larger value
for higher Reynolds numbers. To accentuate the vortical patterns, only results for up
to a value of Re = 200 are shown here.

In Fig. 5.3, we show the velocity-vector plots for four different Reynolds
numbers on a plane of constant circumferential angle . Also plotted are the stream-
line patterns. Since the cavity is driven axi-symmetrically (which is not a restriction
in our method), the solution is axi-symmetric. It is of interest to observe that at
Reynolds number smaller than 10 (see Fig. 5.3a, b), the core of the characteristic ring
vortex is located at the mid-height of the cavity (2 = —d/2). Considerable “sym-
metry” of the streamline patterns about the mid-height plane is observed. As the
Reynolds number increases, the core of the primary vortex is driven towards the top
wall and the sliding surface.

As mentioned earlier, the free-slip boundary condition corresponds to a spe-
cial limit of the free-surface boundary condition. It is of interest to note that a
steady-state configuration is also reached when the top surface F is replaced by a
free-slip wall (defined by Eqn. 4.7). Fig. 5.4 contrasts the steady-state flow patterns
of the no-slip F with that of the a free-slip . In this run, the inner cylinder S is
given the steady vertical velocity while the outer cylinder has a no-slip wall condition.
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From this figure, we notice a larger vortical structure in the free-slip case. This is
consistent with the expectation that a free-slip wall is less restrictive to horizontal

flow motion than a no-slip wall, thus allowing vortex to move more freely.

5.2.2 An oscillating cavity with free-slip boundary condi-
tion

In this section, we study the time-evolution of the cylindrical cavity flow
driven by an oscillatory inner wall in the presence of either a free-slip F or a no-slip
F. This flow, with minor modifications in the boundary conditions on some of the
boundary surfaces, can mimic the vorticity structures generated by a hull surface of
a ship in heaving motion.

Consider again the flow configuration in Fig. 2.1, where the bottom boundary
B and outer cylinder £ are stationary walls, and upper boundary F is assumed to be
a free-slip wall. The flow is driven by the motion of a no-slip inner cylinder S, which
oscillates periodically along the z—axis with prescribed velocity

0 hen t <0
W(t) = vhent<®t (5.5)
Wosin (wt) when t >0

where W, is the amplitude of the vertical velocity, and w the angular frequency of
oscillation.

Nondimensionalization is carried out in the same manner as Section 5.2.1.
For convenience, the distance between the inner and outer cylinders is chosen to be
the same as the height of domain d’. The Reynolds number, defined in this case
by Wgd'/V/', is set to 100. The non-dimensional period of oscillation T is defined by
2rW{/w'd', and is taken to be 0.8.

Numerical results are obtained by a mesh size of L x M x N = 24 x 16 x 24,
and time steps At = 0.01 and 0.02 have been used to check convergence, which is
excellent. Because of the non-linear nature of the Navier-Stokes equations, a periodic
solution is not expected. However, the flow is found to display an “almost” periodic

behavior with a “steady streaming” effect (see Schlichting, 1968).
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Fig. 5.5 shows the velocity vectors and pathlines corresponding to four in-
stants of time ¢t = 4T, 4%T, 4%T, and 4%T during the first quarter cycle of the
fifth period of oscillation. It is interesting to study the vortex evolution in this case.
In Fig. 5.5b, the inner cylinder has just reversed its direction of motion and is in
the process of picking up some velocity. A thin shear layer is formed next to the
cylinder while a small clockwise (ring) vortex is generated under the top surface, but
above the counter-clockwise vortex, a residue of the earlier quarter cycle of motion
(Fig. 5.5a). This clockwise vortex later becomes dominant in the flow region while
the counter-clockwise vortex shrinks to the lower corner (Fig. 5.5¢c). In Fig. 5.5d,
the clockwise ring vortex has replaced the counter-clockwise vortex of Fig. 5.5a, and
becomes the only visible vortex. The flow pattern in the second quarter of oscillation
varies relatively slowly, while the pattern for the last two quarters represents a change

of flow direction relative to the first two quarters.

5.3 Transient wave field near a cylinder

The Cauchy-Poisson wave problem solved in Chapter 3 for an inviscid fluid is
re-examined here for a viscous fluid. In order to understand the influence of viscosity
on the solution, results of viscous flows with different Reynolds numbers are obtained,
and are compared with their inviscid counterparts whenever appropriate.

We first non-dimensionalize the flow parameters by the following primary
variables: the radius of inner cylinder r!, and gravitational acceleration ¢’. The char-
acteristic velocity U" is thus defined by \/571_'2 The Reynolds number Re is defined by
\/ﬁrf /v, and Froude number F. is equal to unity. Linearized free-surface boundary
conditions (4.5) are applied on free surface F, while no-slip boundary conditions (4.33)
are chosen on the inner cylinder S, the outer cylinder ¥, and the bottom B. The

initial wave form is taken to be
n(r,6,t = 0) = Aexp {—2.651 [(rcos§ — 2.318) + (rsin6)*| }, (5.6)

where A is the initial wave elevation at the center of the hump, which is located

at r = 2.318. This corresponds to a hump located closer to the cylinder than in
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Eqn. (3.15), thus generating a higher velocity as the pulse “impacts” on cylinder (see
Fig. 5.7).

Numerical results are obtained by a mesh size of L x M x N = 64 x 64 x 32
and a time step At = 0.05. Two values of Reynolds number of 10,000 and 50, 000 are
chosen to study the comparative effects of viscosity. A is taken to be 0.1 and d to be
2.0 in this computation. The three-dimensional code was run for ¢ as large as 15. It
was observed to be sufficiently long to allow the "main wave” to diffract around the
cylinder.

During the early stage of the simulation, viscosity is expected to play only
a minor role. The early-time flow features of viscous and inviscid flows are there-
fore expected to be similar. This is evident from Fig. 5.8, in which the free-surface
elevations at r = 1 (body-free-surface intersection) and r = 2.318 (center of initial
hump) are plotted as functions of time for (1) inviscid fluid, (2) viscous fluid with
Re = 50,000 and (3) viscous fluid with Re = 10,000. Furthermore, Fig. 5.8 shows
that the waves damp out much sooner in the case of Re = 10,000 than in the case of
Re = 50,000 and in the inviscid fluid. The wave fields evolve in a similar way in the
case of Re = 50,000 and the case of inviscid fluid. This behavior can also be observed
from the perspective views of the overall free surface pattern plotted in Fig. 5.9. The
similarity between the case of Re = 50,000 and the case of inviscid fluid confirms
that the numerical method has little “numerical viscosity”.

For a closer look at the flow patterns, we include vorticity contour plots for
the above three cases in Figs. 5.10. In these figures, the velocity vectors are overlaid
onto a vorticity contour plot in the vertical plane of symmetry containing the initial
wave peak. The corresponding time is ¢ = 8.00. Vortices of opposite signs can be
clearly seen near the intersection of the body and the free surface in the two cases
of viscous fluids. Boundary layers immediately above the bottom can be clearly seen
from the enlarged views in these two cases, which is thicker in the case of Re = 10, 000.
Again, we observe from Figs. 5.10 that the wave fields in the case of Re = 50,000
and in the case of inviscid fluid are similar, while the case of Re = 10,000 displays a
significant phase difference with the other two cases.

Finally, in Fig. 5.11, we show the hydrodynamic forces acting on the circular
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cylinder for these three cases. It is apparent that, in the case of viscous flow, the only
significant component is the horizontal force due to pressure, which varies with time
in a similar fashion to its inviscid counterpart. However, there is a difference in the

magnitude of the peaks and a phase shift in the case of Re = 10, 000.

5.4 Separated flows under a free-slip surface

As an illustration of the method’s ability to model three-dimensional highly
convective flows, we present some results for a sheared current past a vertical circular
cylinder under free-slip “free surface”. The free-slip surface condition of F can be
easily replaced by a genuine free-surface condition in Eqns. (4.5).

The fluid is again enclosed by a cylindrical wall surface S at ' = rf, a free-
slip surface F at 2’ = 0, a wall boundary B at z/ = —d’, and an open boundary T
at ' =r). As before, we first proceed to non-dimensionalize the flow parameters. In
this case, the obvious choices of primary variables are: the radius of inner cylinder

r;, and the free-stream velocity U’. The Reynolds number Re is therefore defined by

uri/v'.
The applied sheared current is a Poiseuille flow in the z—direction
2\ 2
=1—-1{-= 1
uz) =1- (%), (5.)
and the pressure field
2
P= o (5.8)

Eqn. (5.7), together with Eqn. (5.8), is a well-known solution of the Navier-Stokes
equations with a free-slip boundary condition at z = 0 and a wall boundary condition

at z = —d.

5.4.1 A test problem

Before we solve the problem of such a uniform current past a circular cylin-

der, it is of interest first to check whether or not we can reproduce this one-dimensional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com



65

flow (Eqn. 5.7) in Cartesian coordinates by using our Navier-Stokes solver as a three-
dimensional application in cylindrical coordinates. To do that, we impose the shear
current suddenly on both inner and outer cylinders at ¢ = 0, and hold it constant there-
after. Specifically, the velocity profile in Eqn. (5.7) is imposed as Dirichlet condition
for velocity, and the pressure given in Eqn. 5.8 as Dirichlet condition for pressure
equation. The otherwise still fluid is driven by this sheared current, and begins to
evolve from rest at ¢/ = 0.

We choose Re = 100, r, = 3 and d = 1. The mesh size is L = 32, M = 32
and N = 32, and time step At = 0.05.

The numerical results for such a test are presented in Figs. 5.12 (a) to (d).
Velocity vectors and vorticity contours in the vertical plane of symmetry behind the
inner cylinder are shown for four instants of time. In Fig. 5.12 (a), at ¢ = 1.0, the
flow is rather transient, and two vortical structures are observed at the lower corners.
Fig. 5.12 (d) shows an almost steady flow, in which the velocity vectors everywhere
in this plane have approached the Poiseuille velocity profile prescribed on the two
cylindrical boundaries (given by Eqn. 5.7). The vorticity contours in this case are
evenly spaced straight lines, corresponding a linearly varied vorticity distribution
in the vertical direction. A close examination of the numerical data reveals that a
maximum discrepancy between the value of velocity at any point in the domain and
its expected steady-state value is less than 1% at ¢ = 50.0. Thus both cylinders

behave as they were perfectly porous surfaces.

5.4.2 Cylinder in a sheared current

In this section, we consider the flow about a real cylinder in the shear current.
This can be modeled by replacing the boundary conditions (Eqns. 5.7 and 5.8) on the
inner cylinder by a no-slip boundary condition for velocity (Eqn. 4.4) and a Neumann
condition for pressure (Eqn. 4.36). This is again solved as a time-dependent problem,
as the cylinder is suddenly put into a fully developed Poiseuille flow at ¢t = 0. We
also extend outer boundary to r, = 11, so that the wake shed from the inner cylinder
will not reach the outer boundary for an extended period of time. Re = 275 is chosen
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for this preliminary study, which corresponds to Rey = 550, which Req is a Reynolds
number based on diameter of the cylinder. In order to catch fine flow structures, a
rather refined mesh of L x M x N = 72 x 128 x 24 is used. Time step At is set to be
0.0025.

Figs. 5.13(a) and (b) show the time evolution of such a flow with velocity
vectors and pathlines on the free-slip surface near the circular cylinder. Only half the
flow is shown due to its symmetry. In the early stage of the simulation, the flow is
seemingly irrotational on the free-slip surface (Fig. 5.13a). As time elapses, vorticity
is generated at the cylinder surface and transported to the rear side of the cylinder,
inducing a flow reversal. Then, a flow separation appears (Fig. 5.13b), giving rise
to a closed recirculating wake zone behind the cylinder, which grows in time until
a steady state is reached. To shed some light on the three-dimensional features of
this flow, a nearly steady state is plotted in Fig. 5.14. The figure on top shows the
pathlines on five horizontal planes from near the bottom wall (2 = —0.991) to the
free-slip boundary (z = 0), while the bottom one presents vorticity contours. The
time is ¢ = 3.0000.

On the free-slip surface z = 0, a large clockwise vortical region (dashed lines)
is observed behind the cylinder. The size of the closed recirculating zone decreases and
its center moves upstream as the horizontal cut approaches the bottom, eventually
disappearing on the bottom wall due to no-slip boundary conditions. Counterclock-
wise secondary vortical structures can also be seen at a short distance behind the
cylinder. The flow separation and the formation of a closed recirculating zone be-
hind the cylinder is also seen clearly in Fig. 5.15, in which vorticity contours and
pathlines are plotted in two vertical planes at § = 0 (left) and 7 (right), a circular
surface at = 1.02 and a horizontal plane at z = —0.99. (The notations of the
vorticity components plotted in this figure are given in the caption.) In the bottom
plane of Fig. 5.15, a flow separation also occurs in front of the cylinder, due to a
adverse pressure gradient ahead of the cylinder, forming a saddle point on the line of
symmetry.

One of the most important flow features found in such a body/bottom junc-

ture is the so called “horseshoe vortex”. This phenomenon occurs in many places
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including appendage/hull junctures in ships, wing/fuselage junctures in aircrafts,
high-rise buildings, and bridge piers in rivers, often leading to negative effects (see
e.g- Hawthorne, 1954, Tan, 1989, Deng and Piquet, 1992). An overall picture of
the flow is again seen in Figs. 5.15. On the vertical leading-edge plane (at right),
the flow encounters an adverse pressure gradient in front of the cylinder, inducing
a horseshoe vortex (dash-line). The horseshoe vortex, carried by the outer flow,
trails off downstream (showed by solid-line in Fig. 5.16). In Fig. 5.16, an L-shaped
end-wall vortex (dash-line) is formed along cylinder and bottom surfaces, displacing
the horseshoe vortex away from the cylinder and bottom into the outer flow. A new
counter-rotating end-wall vortex (solid-line) is then formed, which, in terms, displaces
the former end-wall vortex away from the cylinder-bottom juncture. The formation of
horseshoe vortex and its interaction with end-wall vortices can also been seen clearly
from Figs. 5.17 and 5.18, which also shows a detailed velocity field near the cylinder.
As a supplement to Figs. 5.17 and 5.18, magnified views of the velocity field in two
radial planes reveal the existence of a secondary root vortex at the cylinder-bottom
juncture. This vortex was also observed by Tan (1989) and Deng and Piquet (1992).

Finally, we show in Fig. 5.20 the hydrodynamic forces on the cylinder. The
existence of steady state is again confirmed by this plot. It is interesting to note that
the horizontal force due to shear stress constitutes nearly 1/10 of the total horizontal
force, even though this is not a surprise at this low Reynolds number Re = 275.

It is a common engineering practice to estimate the total horizontal force
on the cylinder by assuming that each differential element in the z direction can be
modeled by a two-dimensional flow

F.= [ Yoirepura: = [ Ciren[i-Crl e 9

where D = 2 is the diameter of cylinder. Here Cy is the drag coefficient for a
circular cylinder in two-dimensional flow, depending on the local Reynolds number
Re(z) = 275[1 — (z/d)?]. Experimental value of C; as a function of Reynolds number
is available from a number of sources (e.g. Schlichting, 1968). F estimated by using
Eqn. (5.9) has a value of 0.79. Compared with the three-dimensional numerical results
of 0.70824 shown in Fig. 5.20, it is overestimated by nearly 12%.
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5.5 Two-dimensional uniform flow past circular
cylinder

The uniform viscous flow past a circular cylinder in the two-dimensional
case is a classic problem in fluid mechanics. Since extensive experimental data exist
for this case, it is an ideal problem to validate our numerical method. One of the
most detailed experimental studies was conducted by Bouard and Contanceau (1980),
where the initial development of the flow was carefully recorded and analyzed. These
experimental results have been used extensively by numerical workers to validate
their computational results. Numerical results obtained using finite-differences (e.g.
Ta Phuoc Loc and Bouard, 1983) and by random vortex method (Stansby and Smith,
1991 and Yeung and Vaidhyanathan, 1992) agree fairly with experimental observa-
tions.

Before solving this problem numerically, we proceed to non-dimensionalize
the flow parameters using primary variables: the radius of cylinder r}, and the free-
stream velocity U’. The Reynolds number Re is therefore defined by U'r./v'. Nu-
merical results for three Reynolds numbers of Re = 275, 1,500 and 4750 were ob-
tained, which corresponds to the cases of diameter Reynolds numbers of Rey = 550,
3,000 and 9500, studied in Bouard and Contanceau’s experiment. To simulate these
two-dimensional flows using our three-dimensional solver, we use free-slip boundary
conditions (Eqn. 4.34) on the top surface F and the bottom surface B. This is solved
as a time-dependent problem: at time ¢t = 0, the cylinder is put into an otherwise
uniform flow, and the flow begins to evolve. A uniform velocity profile in the negative
z-direction is imposed as initial condition in the entire computational domain, and
is hold constant afterwards on the outer boundary ¥ as boundary conditions. Zero
pressure is imposed on the outer boundary ¥ as boundary condition for pressure.
The flow simulated here is kinematically equivalent to the flow around an impul-
sively started cylinder. For the cases of Re = 275 and 1,500, a grid resolution of
LxMx N =80x128 x 2, and a time step of At = 0.01 are used. The radius of the
outer boundary r, is set to be 16.0. A finer grid resolution of Lx M x N = 80x256 x 2,
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and a smaller time step of At = 0.005 are used for the case of Re = 4750, with r,
being 11.0.

Flow evolution for the cases of Re = 275 and 1,500 is shown in Figs. 5.21
to 5.24. Flow patterns at t = 6.0 for these two cases agree well with Bouard and
Contanceau’s experimental results at a similar time ¢* = 2.5, which is equivalent to
t = 5.0. Bouard and Contanceau observed in their experiment that the secondary
phenomena are somewhat different in these two cases. In the case of Re = 275
(or Req = 550), a single secondary eddy exists under a “protruding” flow struc-
ture (see Fig. 2(b) in Bouard and Contanceau, 1980), whereas when Re = 1,500
(Req = 3,000), a pair of secondary eddies are present (see Fig. 3(a) in Bouard and
Contanceau, 1980). These flow differences are reproduced in the present simulation.
For a quantitative comparison between the present numerical results and the exper-
imental ones, we show in Fig. 5.25 the z—component velocity in the wake along the
line of symmetry for Re = 275 and 1,500. The agreement is excellent for these two
cases at each one of the time instants.

The results for a higher Reynolds number of Re = 4,750 (Req = 9, 500) are
presented in Figs. 5.26 to 5.29. In these figures, the pathline and velocity vector
plots are presented alongside with photos by Bouard and Contanceau (1980) at four
corresponding time instants. Flow patterns agree excellently at each stage of the flow

evolution.

5.6 Wave-induced separation around a circular
cylinder

In this last result section on viscous flows, we will study the case of a uniform
current past a vertical circular cylinder under a “real” free surface. We use the same
annular computational domain as in the previous cases, which is bounded by a free
surface F, a bottom B, a cylindrical cylinder S, and an open boundary ¥. As our
major interest in this case is the flow structures near the free surface, we use free-slip

boundary conditions on the bottom boundary so that the horseshoe vortices (studied
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in Section 5.4.2) will not be generated to interfere with the flow near the free-surface.
A uniform current, instead of the sheared current in Section 5.4.2, is used in this
study, in order to be consistent with the free-slip boundary condition used on the
bottom boundary. Similar to the previous cases, we proceed to non-dimensionalize
the flow parameters using primary variables r} (radius of inner cylinder r}), and U’ (the
free-stream velocity). The Reynolds number Re is consequently defined as U'r!/v'.

The kinematic free-surface boundary condition in this case needs to be mod-
ified, in order to accommodate the fact that the z—component velocity on the free
surface can be of order O(1). This modified condition is written as

dn dn
a + u,a =w, at z = 0, (5.10)

where u, is the total z—component flow velocity, including the uniform stream. The
dynamic conditions remain the same as in Eqns. (4.5).

A uniform flow in the negative z—direction
u=—cosf, v=sinf, w=0 (5.11)

is applied on the outer boundary ¥ at all time, and is also used as initial conditions
for the entire flow field. Dynamic pressure P is set to be zero on T at all time.
Owing to the presence of the free surface, if the no-slip boundary conditions
are suddenly imposed at ¢ = 0 on the cylinder surface in the uniform current, a splash
will occur on the free surface, and will terminate the numerical simulation. In order to

avoid this “initial splash”, we use the following “porous” body boundary conditions
u=—cos(0)f(t), v=sin(8)f(t), w=0, atr=r, (5.12)

where f(t) is a function of time ¢ given by

£(t) = { 3 [1 + cos(ﬁ-)] when ¢t < Tp, (5.13)

when t > T},

with T}, being a modulation time. It is obvious that when ¢ > T,, Eqns. (5.12) acts
like a no-slip condition as given by Eqns. (4.4).
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Numerical results are obtained here for Re = 275 and Fr = 0.4. A grid
resolution of L x M x N = 80 x 128 x 20 and a time step At = 0.01 are used. Outer
boundary ¥ locates at r, = 16.0, and the modulation time T,, = 3.00.

Fig. 5.30 shows the perspective views of the free-surface elevation at time
t = 6.00 and ¢t = 10.00. A rise in elevation at the bow and a drop in elevation at
the stern are seen from these plots. Another depression is seen downstream near
the widest position of the cylinder, because of the flow separation occurring near
this location. Away from the cylinder, a Kelvin-like wave pattern is observed, which
resembles the wave patterns trailing a moving ship.

To illustrate the flow patterns on the free surface near the cylinder, we plot
pathlines and velocity vectors in Fig. 5.31, and pathlines and wave elevation con-
tours in Fig. 5.32. The pathline patterns in these plots are similar to these in the
two-dimensional cases plotted in Figs. 5.21 and 5.22 for ¢t = 3.00. In Fig. 5.32, the
deepest wave trough coincides with the center of the prime vortex, indicating the
suction effects of vortex. Vorticity contours are plotted in Fig. 5.33 on five horizontal
planes at different depths. Vorticity patterns underneath the free surface are shown
in Figs. 5.34 and 5.35. The top curves on each section are the free surface elevations,
which are enlarged by 10 times for clarity. In Fig. 5.34, the circumferential component
of vorticity wy is plotted on five radial planes at § = 0, /4, /2, 3r/4 and . In
Fig. 5.35 the z—component vorticity w, is shown on nine vertical planes perpendic-
ular to the outer flow. These vorticity patterns shows that in this case most of the
vortical structures are located behind the cylinder, due to the massive wave-induced
separation in this region. It appears in Fig. 5.34 that the vortical low motion at
the leading edge of cylinder is relatively weak. This is consistent with Yeung and
Ananthakrishnan’s (1992) finding that a clean free surface was unable to generate a
strong cross-stream vortex.

To show the three-dimensional features of this flow, we plot in Fig. 5.36
to 5.38 iso-surfaces of vorticity components. Iso-surface for Vw,2 + wg? = 1.0 is
presented in Fig. 5.36, which shows some intricate vortical structures trailing from
the cylinder surface. In Fig. 5.37, two iso-surfaces for the magnitude of vorticity
vector are plotted. This figure confirms that cylinder surface is the major source of
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vortex generation in this case. The iso-surfaces for the vertical component of vorticity
w; are shown in Fig. 5.38, which accentuate the three-dimensional recirculating zone
behind the cylinder. The iso-surfaces for the dynamic pressure P = —0.4, —0.1 and
0.2 are plotted in Fig. 5.39. Fig. 5.40 shows the trajectories of two particles released
in front of the cylinder. The particle released near the free surface moves smoothly
downstream, circumventing the recirculating zone behind the cylinder. By contrast,
the particle released near the free-slip bottom is trapped into the recirculating zone,

circulating and moving upwards in a violent manner.
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Figure 5.1: Velocity profiles in the first period of motion and in steady-state.
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Figure 5.2: Real and imaginary parts of f(r) in Eqn. (5.3).
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Figure 5.3: Steady-state streamlines in a cylindrical cavity for different Reynolds
numbers (driven by outer cylinder): (a) Re = 1, t = 2.0; (b) Re = 10, t = 2.0; (c)
Re =100, t = 3.0; (d) Re = 200, t = 3.0.
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Figure 5.4: Steady-state flow in a cylindrical cavity, driven by inner cylinder: (top)
wall at all boundaries; (bottom) free-slip wall on top. Re = 200 and ¢ = 3.0.
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Figure 5.5: Cylindrical cavity flow driven by an oscillatory wall, free-slip wall on top:
(a) t = 4T; (b) t = 43T; (c) t = 45T; (d) t = 43T, where T is the period of

oscillation.
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Figure 5.6: Cylindrical cavity flow driven by an oscillatory wall, no-slip walls on all
boundaries: (a) t = 4T; (b) t = 43T; (c) t = 4LT; (d) t = 48T, where T is the

period of oscillation.
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Figure 5.7: The initial free-surface form at ¢ = 0. The wave elevation has been

enlarged.
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Figure 5.8: Time history of wave elevation at r = 2.318 (top) and r = 1.000 (bottom),
for the plane § = 0.
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Figure 5.9: Free-surface elevations for the cases of inviscid flow (top), and viscous
flows with Re = 50,000 (middle) and Re = 10,000 (bottom) at ¢ = 12.000. The

elevations have been enlarged for clarity.
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Figure 5.11: Time history of hydrodynamic forces on cylinder.
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Figure 5.13: Velocity vectors and pathlines on the free-slip surface for t =
0.0125,1.0000 and 3.0000 (only one-fourth of the velocity vectors are shown).
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Time = 3.0000
Re =275

Figure 5.14: Pathlines (top) and vorticity contours (bottom) in horizontal planes for
t = 3.0000. The z-direction vorticity is shown between —2.5 and 2.5 with increment

of 0.2. Dashlines present negative values.
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Figure 5.15: Pathlines (top) and vorticity contours (bottom) in vertical planes § = 0
and 7, cylindrical surface r = 1.019 and horizontal plane z = —0.991. The §-, r- and
z-direction vorticity contoures are shown in vertical plane, on cylindrical surface and
in the horizontal plane, respectively. The vorticity contours shown are between —2.5

and 2.5 with increment of 0.2. Dashlines present negative values.
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Figure 5.16: Velocity Vectors (top) and vorticity contours (bottom) in transverse
planes at £ = —~2.0, —~1.0, —0.5, 0, 0.5, 1.0, 2.0 and 3.0. The y-direction velocity and
z-direction vorticity are shown. The vorticity contours shown are between —2.5 and

2.5 with increment of 0.2.
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Figure 5.17: Velocity vectors (top) and vorticity contours (bottom) in radial planes.
The r-direction velocity and §-direction vorticity are shown. The vorticity contours

shown are between —2.5 and 2.5 with increment of 0.2.
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Figure 5.18: Velocity vectors (top) and vorticity contours (bottom) in transverse
planes. The y-direction velocity and z-direction vorticity are shown. The vorticity

contours shown are between —2.5 and 2.5 with increment of 0.2.
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Re=275 Time=3.0000 6=0

Figure 5.19: Magnified views of velocity vectors and pathlines in two radial planes at
6 = 0 (top) and = /4 (bottom).
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Figure 5.20: Time history of hydrodynamic forces on cylinder.
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Re=275 T=6.0

Figure 5.21: Pathlines and velocity vectors for two-dimensional flow around an im-

pulsively started cylinder at Re = 275.
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Figure 5.22: Pathlines and vorticity contours for two-dimensional flow around an
impulsively started cylinder at Re = 275. Contour values equal —22.0(0.825)11.000.
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Figure 5.23: Pathlines and velocity vectors for two-dimensional flow around an im-

pulsively started cylinder at Re = 1500.
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Figure 5.24: Pathlines and vorticity contours for two-dimensional flow around an
impulsively started cylinder at Re = 1500. Contour values equal —22.0(0.825)11.000.
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Figure 5.25: Wake velocity for Re = 275 (top) and Re = 1,500 (bottom). Theory:
Current calculation. Experimental: Bouard and Contanceau (1980).
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Figure 5.27: Pathlines and vorticity contours (top) and experimental result (Bouard
and Contanceau, 1980) (bottom) for Re = 4750 at ¢t = 2.0.
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Figure 5.30: Free-Surface perspective views and wave elevation contours for Re = 275
and Fr = 0.4 at t = 6.00 (top) and ¢t = 10.00 (bottom). Dashlines present negative

elevations.
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Figure 5.31: Pathlines and velocity vectors on the free surface for Re = 275 and
Fr = 04 at t = 6.00 (top) and ¢ = 10.00 (bottom). Dashlines present negative

elevations.
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Figure 5.33: Vorticity contours for w; on five horizontal planes for Re = 275 and
Fr = 0.4 at t = 6.00 (top) and at t = 10.00 (bottom). Contours are shown between

—5.0 and 5.0 with increment of 0.4. Dashlines present negative values.
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Figure 5.34: Vorticity contours for wg on five radial planes for Re = 275 and Fr = 0.4
at t = 6.00 (top) and ¢t = 10.00 (bottom). Contours are shown between —1.00 and

0.75 with increment of 0.07. Dashlines present negative values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



Pt
(o=}

7

NN
NN

e

=

ANRNANT NV
\s\\

NN

QA \
.

¥

A N\
"

[
}///:g
G
g.\i\}\
N\

7

e

-
i 2

Sed

5 Sary
i, ;\

o1
(1]
il
N
N
($))
=
3
{11]
i
o
o
o
o
o
x
"
N
o
x
"
w
o

\\\
N
N\

NN

(a)
n
(2]
o

N

Re =275 Time = 10.0000 x=2.0

Figure 5.35: Vorticity contours for w, on nine transverse planes for Re = 275 and
Fr = 0.4 at t = 6.00 (top) and at ¢t = 10.00 (bottom). Contours are shown between

—2.5 and 2.5 with increment of 0.2. Dashlines present negative values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



108

Re=275 Fr=04 T=10.0
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Figure 5.36: Iso-surface for (w,? + wg?)/? = 1.0 for Re = 275 and Fr = 0.4 at
t = 10.00.
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Figure 5.37: Iso-surface for (w,? + we® + w,?)/? for Re = 275 and Fr = 0.4 at
t = 10.00. Dashline presents value of 15.0, solidline for 8.0.
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Figure 5.38: Iso-surface for w. for Re = 275 and Fr = 0.4 at t = 10.00. Dashline
presents negative value of —1.0, solidline for +1.0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



111

Re=275 Fr=3.0 T=10.0

T

e

MR

2

£:

e 4
o

P¥
s
*
A
3

-

zzzi‘a

I R
et == 2

Qo N g
vty aboinde obd 3

1o e

275 and Fr = 0.4 at

Figure 5.39: Iso-surface for dynamic pressure P for Re

t = 10.00. Dashlines present negative values.
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Re=275 Fr=04 T=10.0

Figure 5.40: Particle trajectories for Re = 275 and F'r = 0.4 at ¢ = 10.00.
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Chapter 6

Conclusions

An accurate and efficient pseudo-spectral method is developed in this thesis,
for analyzing complex viscous flows around a vertical cylindrical structure with a free
surface. The inviscid flow problem with free surface is first considered, followed by
the consideration of viscous effects.

A Poisson-equation solver is first developed based on a diagonalization tech-
nique and a spectral collocation method. This spectral Poisson solver is then applied
to several inviscid-flow problems, which include a three-dimensional Cauchy-Poisson
wave problem with linearized free-surface conditions and a second-order wave diffrac-
tion problem. Validation with regards to accuracy, efficiency and convergence of the
Poisson-equation solver is carried out. As shown in Chapter 3, the Poisson-equation
solver yields solutions that converge exponentially to the exact ones as the number of
grids increases. The total computational counts of this method is of order O(N'7)
(N being the total number of grid points). These features allow one, on the one hand,
to use fewer grid points to achieve higher accuracy, and, on the other hand, to use
finer grid points to achieve higher flow resolution with relatively low computation
efforts.

The formulation for the viscous-flow problem is based on the fractional step
projection algorithm originated by Chorin (1968) for solving the Navier-Stokes equa-
tions. “Momentum equations” without the pressure terms are first solved for an
auxiliary velocity field. An ADI algorithm is used to reduce these partial differential
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“momentum equations” into sets of ordinary differential equations, which are solved
by a spectral collocation method. The Poisson-equation solver developed earlier is
used to solve the resulted pressure Poisson equation. A velocity correction proce-
dure concludes the formulation, which yields the “true” velocity field. In the case
of free-surface flows, additional boundary conditions based on stress-continuity rela-
tions need to be applied. These free-surface boundary conditions are linearized by
assuming small wave-slope.

This spectral method is applied to treat several viscous-flow problems. In
order to show the method’s ability of treating complex wave problems in a viscous
fluid, a viscous Cauchy-Poisson wave problem is solved. The wave profiles for the
case of a viscous fluid approach their inviscid counterparts as the Reynolds number
increases. This shows that wave motions have been correctly modeled in the present
study. Two problems with strongly nonlinear convective effects have also been stud-
ied. In the first case, a sheared current past a vertical cylinder under a free-slip
surface is considered. The three-dimensional flow separation behind the cylinder and
the formation of horseshoe vortices near the body-bottom juncture are simulated and
examined. In the second case, a uniform current past cylinder under a free surface
is considered. A Kelvin-like wave system is observed in the solution, and the three-
dimensional vortical flow structures near the free surface are analyzed and visualized
using visualization techniques. Extensive validations are also performed for viscous-
flow solutions. Among them, the two-dimensional uniform flow around an impulsively
started circular cylinder is studied, and compared with comprehensive existing exper-
imental data. Excellent agreement is obtained for a wide range of Reynolds number
from 550 to 9500, establishing method’s ability to handle strongly convective flows.
From these numerical studies, the spectral method is proven to be a highly accurate
and highly efficient one.

In this work, only flows around a circular cylinder and under a linearized
free surface are studied. However, an extension of this work to consider general
body geometries and nonlinear free surface can be achieved in a number of ways.
With special coordinate systems, treatment of other special body geometries (other

than circular cylinder) is possible. As an example, a formulation of flow around
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a elliptical cylinder using elliptical coordinates is given in Appendix E. Numerical
mapping techniques are also ideal candidates for this extension. For example, a
stretching in the vertical direction, which maps a wavy free surface into a flat one,
allows the solutions of nonlinear free-surface flows around cylindrical bodies. It is also
worthwhile to pursue a spectral element method to tackle flow problems involving
complex geometries. It has been proven in many fluid-mechanics applications that
spectral element methods enjoy the geometric flexibility of finite element methods,
and the accuracy and convergence properties of spectral methods, thus making them
ideal for solving nonlinear free-surface flow problems.

Other extensions of the present method can also be made. The implemen-
tation of the RANS is straightforward in the present solution framework provided
an appropriate turbulent model is incorporated. The high accuracy of this solution
method also makes it ideal for direct numerical simulation (DNS) of turbulence. The
accuracy of time-dependent solution can be further improved by using a higher-order

difference scheme in time.
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Appendix A

Coeflicients for spectral Poisson

equation solver

In this appendix, we give mathematical expressions for v,y and Dyn(R) in
Eqn. (2.20).
When n is odd with all ¢ such that 0 < ¢ < n + 1 and even ¢ such that
n+3<g<N-2
1

oo =gV = DIV = 1 = w7][(A- — B_N*)(Ay + Bad?)
—(As + By NY)(=1)(A_ — B_¢?)), (A1)
while with odd q such that n +2< g < N — 3
Yna =Ci,,Q(q2 -n?) + DA:Cn (N = 1)[(N = 1)* = n*|[(A- — B_N?)(A+ + Byg?)
~(44 + BeN?)(-1)(4- — B_g%). (A.2)
Dn(R) is given by
Dnn(R) =gy (N = DV = 1)* = ]

x[(A4 + By N?)h_m(R) — (A— — B_N?)hym(R). (A.3)

When n is even with all ¢ such that 0 < ¢ < n + 1 and odd ¢ such that
n+3<g<N-2
1

e =p_C. N(N? - n?){[A- —~ B_(N - 1)*][A+ + B+d7]
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+[A+ + Bo(N — 1)*(-1)[A- — B_¢"]}, (A4)

while with even g such that n +2 < ¢g< N -2

Tog =-9(8* = %) + %D,wan(N* — n?)[4_ — B_L(N — 1)*][A + B.q’]
+[A4 + By (N —1)*)(-1)*[A- — B_¢]}. (A.5)
D.n(R) is given by
Dan(R) == ; Z NV =)

x{[A= = B_(N = 1)hsm(R) + [A+ + Be(N — 1)hm(R)}. (A6)
The D4p in above equations is given by

Dap = —{[A-—B_(N =1)*|[A+ + B¢ N*] +[A_ — BLN?|[A+ + Bo (N - 1)*]}. (A.7)
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Appendix B

Solution of ordinary differential
equations by spectral collocation

methods

In this appendix, we give details on how a second-order ordinary differential

equation is solved by a spectral collocation method.

B.1 Solution by Chebyshev collocation method

Consider second-order ODE
y"(z) +a(z)y'(z) + b(z)y(z) = c(z) —1<z<+1, (B.1)
with boundary conditions
A_y(-1)+B-y'(-1)=C_,
A+y(+1) + Byy'(+1) = Cy, (B.2)

where a(z), b(z) and ¢(z) are smooth functions, and A_, B_, Ay and By are con-
stants.

We first expand function y(z) by a truncated Chebyshev series

N
y(z) =) a,T;(z), (B.3)

7=0
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where T;(z) is the Chebyshev polynomial of order j. Substitution of Eqn. (B.3) into
Eqn. (B.1) gives

N
3 [T7(=) + a(2)TY(z) + b(=)Ti(z)| a; = c(<). (B.4)

=0
Using relation
2TY(x) - °Ty(=)

T/(z) = 17

we rewrite Eqn. (B.4) as

;2

N - : ;
> { [1 _ 22 + a(:c)] Ti(z) + [b(z) - -1—-—] Tj(z)} a; = c(x). (B.6)

3=0 -z’

We choose satisfy Eqn. (B.6) at collocation points

T; = —cos %i, for :=1,N—-1. (B.7)
It is easy to show that
() = cos (Fii) (1P ey < FEDH T
Ty(a:) = cos (i) (1) T(a0) = Sl in (i) (B.3)

and Eqn. (B.6) can be written as

N
> Aijaj=c(zi), for i=1,N—-1 (B.9)
=0
where
_[—cosFi NG A N Y L
A'J - [Sinz(%i +a(zl)] Sin(%z') Sm(NZJ)’i" b(x') Sin('fvl) ( 1) COS(N?‘J)'

(B.10)
To satisfy boundary condition (B.2), we substitute (B.3) into (B.2) to yield

S° A_Ty(~1) + B_T{(~1) = C-

J=0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



126

Using relations Tj(—1) = (—1), Tj(—1) = (—1)"*'52, Tj(+1) = j and T}(+1) = j?,
we write Eqn. (B.11) as

N
>_ Aoja; = C-,
J=0
N
Z Anja; = Cy, (B.12)
7=0

where

Aoj = A_(—1) + B_(-1y*"7?,
Anj = Ay + By j2. (B.13)

The linear system in Eqns. (B.9) and (B.12) with full matrix A;; is solved
most accurately with a direct method, or by an iterative method (Orszag, 1980).

Note the collocation points in Eqn. (B.7) are of Chebyshev spacing. The
spectral convergence of the above procedure in such a spacing is gnaranteed, provided

a(z), b(z) and c(z) are smooth functions (Canuto and Quarteroni, 1981).

B.2 Solution by Fourier collocation method
Consider periodic function y(z) satisfying a second-order ODE
y'(z) + a(z)y'(z) + b(z)y(z) = c(z) —7 <z < +p, (B.14)

where a(z), b(z) and ¢(z) are smooth functions.
We first expand function y(z) by a truncated Fourier series

N
?—l

y(z) = ajeij’ (B.15)
N
2

=3

where i = /—1. Substitution of Eqn. (B.15) into Eqn. (B.14) gives

1

Y [-5? +ija(z) + b(z)] & = c(a). (B.16)

N
2

iz
|

=
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We choose satisfy Eqn. (B.16) at collocation points

T; = i_:rr'i’ for : = —%,% -1 (B.17)
Eqn. (B.16) can be written as
N
> Aja;=c(z;), for i=1,N -1 (B.18)
=0
where
Aij = [=5% +ija(z:) + b(z:)| €77, (B.19)

The linear system in Eqns. (B.18) with full matrix A;; is solved most accu-
rately by a direct method.
The spectral convergence of the above procedure is proved by Pasciak (1980),

provided a(z), b(z) and ¢(z) are smooth functions.
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Appendix C

Calculation of derivatives in

spectral collocation methods

In this appendix, we give details on how to calculate first-order derivative of
a smooth function under the framework of spectral collocation methods. The same

treatment also applies to higher-order derivatives.

C.1 Calculation of derivative in Chebyshev collo-

cation method

Let f(z) be a smooth function in the domain = € [—1,1]. Then f(z) is inter-
polated by the Nth order polynomial g;(z) such such that g;(z;) = §;; at collocation

points z;, i.e.

N
fl@) =3 f(z)gi(2)- (C.1)
Jj=0
If z; is chosen to be Chebyshev collocation points z; = —cos ¢, for i =

0,..., N, it is shown by Canuto and Quarteroni (1981) that

_ (=11 - 2?)Ty(=)
gf(z) - CjN2($ _ .‘Bj)N LI |

The derivative of f(z) at collocation points z; can be computed by taking

7=0,..,N. (C.2)

analytical derivative of g;(z) and evaluating it at z;, i.e., D;; = g}(z:). Canuto and
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Quarteroni show (1981) that, for j =0,..N,:=0,..., %

- —1)i+s .
Dij:%f; (—1)'%s = ]#k,

T 40 Sn
D;; = %;r((:,-)) 1 #0, (C.3)
N
2
DOO — _2N6;t1 .
and
. N
D,‘j = —Dn_iN-j, for: = ? +1,...,N. (C.4)
The derivative of f(z;) becomes
N
f'(.z:.-) = Z D.-jf(a:.-), for: = 0, cesy N. (C5)
3=0

C.2 Calculation of derivative in Fourier colloca-

tion method

Let f(z) be a smooth beriodic function with period 27 in the domain z €

[-7,7]. We expand f(z) into a truncated Fourier series

Njf2-1
fle)= 3 fie", (C.6)
i=—N/2
where
£ 1 = —liz;
fi= 5 2 flz;)e™™, (C.7)
N =0
with z; = —x + 27j. Substitution of Eqn. (C.7) into Eqn. (C.6) yields
1 N[2-1 [N-1 . .
f(z) = i > [E f(:r,-)e"'xf] e"r. (C.8)
i=—N/2 | j=0
Taking derivative of Eqn. (C.8) and changing the sequence of summation, we have
N-1 i N/2-1 ..
flo)= ¥ fla) |~ 3 =) (C9)
3=0 N i=-N/2
At collocation points ¢ = z;, we rewrite Eqn. (C.9) as
N-1
fi(z:) = X f(z5)Dij, (C.10)
=0
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where D;; can be reduced to

Dij=- N'fl G 1 ""'+2‘N/2“!:—1 sin 22029 (o)
i = Ni=—leze =N —(-1) i 2 tsin —— . .
The summation in Eqn. (C.11) can be further reduce by using identity
n-1 i =1
T ksin bz = su.u;ai_ncos- Z a:’ (C.12)
k=1 2sin"3  2sin3

and finally

D,'j = (—l)i_j —|N + %cot Lj\-f-{)- (C°13)
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Appendix D

Perturbation expansion of

free-surface conditions

In this appendix, we first derive the perturbation expansion of the nonlinear
kinematic and dynamic free-surface conditions up to the third order. The difficulties
of solving the time-dependent third-order diffraction problem using these free-surface
conditions are discussed next.

The nonlinear kinematic and dynamic free-surface conditions in cylindrical

coordinates are
1
nt+7]r¢r+;§7]0¢8—¢z=0 z =1,
1 1
M+ bt 5(67+ 585+ 42) =0 z=1. (D.1)

Note that these two conditions are satisfied at unknown position z = 5. To overcome
this difficult, we assume that this displacement of the free-surface 7 is small, and we
express quantities at the exact free surface by Taylor series based on the mean free

surface. For example, we write
1
6(r,6,m,t) = 6(r,0,0,t) + nés(r, 6,0, ) + 2n°4.:(r, 6,0, ) + O(n°),
1
ée(r,6,1,t)= &.(r,6,0,t) + n¢,:(r, 6,0, t)+ 5712¢m (r,6,0,t) + 0(773)7

1
¢9(1‘, 0, 7, t)= ¢o(f‘, 03 Ov t) + 17¢9z(1', 07 07 t) + 5172¢922(1‘, 0a 0’ t) + 0(7]3)’
...... (D.2)
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Substitution of Eqn. (D.2) in Eqn. (D.1) gives

1 1 1 1
Ul + nr(¢r + 7]¢r: + Enz‘bru) + r—2ﬂ0(¢0 + 774562 + §nz¢0zz) - (¢z + n¢:: + 5772¢:zz)
+0(r°) =
12 1 12 2, 1 1, 2
n+ (ét + 7145:: + 57} ¢tz:) + 5(¢r + n¢rz + 57] ¢rzz) + 2?(¢0 + 7’¢0: + '2"77 ¢0z:)

1 1
+5(8: + 1z + §n2¢m)2 +0(n®) =0. (D.3)
We now introduce perturbation series with respect to wave steepness e:
¢ = e¢(1) + €2¢(2) + €3¢(3) + 0(64),
n =en) + €9 + 9 + O(e*). (D-4)

Following the multiple-scales analysis procedure (see Nayfeh, 1973), we also introduce

formally slow time variables
th=¢€t, t;=¢€t, t3=¢€t,..., (D.5)

so that 2 5; should be replaced by

a d a g
55—>§+ a +€§;+ (D.6)

Substituting Eqns. (D.4) to (D.6) into Eqn. (D.3) and collecting terms of
same order of ¢, we obtain:

O(e):

nt(l) - ¢£l) = 01
™+ 4N =0 (D.7)

O(€?):
2 _ 40 = {_ 400 _ _12_,,(1)¢(1) + n“’¢“’} b,

2 2
1@ + 6 = { g0 - 2407 4 Sg% 1 g0} o (D)
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O(€e%):
P-g0 = {- [n$1’¢‘2’ +7080] - = 1062 + 7]}
—n® [0 + Ll - ¢gz)]+ 1260 + 060 — [ + 1],
74 = - [n%s:’ + 160 + 20| - [4080 + Zg004) + 406

: . .
=1 606 + 545765 + 6060 | — [41) + 67 +nM6l)]

(D.9)

The solutions for velocity potentials ¢(!) and ¢ can be derived using
the method of separation of variables, accounting for the free-surface conditions in
Eqns. (D.7) and (D.8) (see Mei, 1989). The results are given as

40 = Re [ (t2)w cosh k(z + d) ,a] ’
k sinh kd
40 = [3A2(t2)w cosh 2k(z + d) 62,9] ,

8 sinh* kd (D.10)

where 8 = kz — wt, with w satisfying w? = kg tanh kd.
A combined free-surface condition for ¢(® can be derived by eliminating
7 from Eqn. (D.9). Substitution of Eqn. (D.10) into this combined free-surface
condition gives:
wh?
Tosinb £ |
+|A|2(—iAe® +iA"e™)(— cosh 4kd — 8)] + [Ae? + A"e~¥]. (D.11)

&% + ¢¥= [(=iA%™ +i4™%e=%9)(6 cosh 2kd — 33)

The terms proportional to € or e~ are the so-called “secular terms”, which
have to be eliminated, in order to have solution #® bounded at large ¢ (see Nayfeh,
1973). This leads to

:: + iwq|A*A = 0, (D.12)
where w, = wk?SSBIEHS  The solution to Eqn. (D.12) is
A(ty) = ae 2tz (D.13)

where a 1s a constant.
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Substituting Eqn. (D.13) into Eqn. (D.10) gives

wcoshk(z + d) . -
=2 sinlkxzkd D sa (k= - o),
2
s 34 gz)“’ cosh 2’“&1; 9) gin 2(kz — at), (D.14)
where @ is the modified wave frequency given by
h4kd + 8
L:J =W [1 + a2k2£1H . (D.15)

The solutions in Eqns. (D.14) with the modified frequency @ do not ezactly
satisfy the free-surface conditions in Eqns. (D.7) and (D.8). As a consequence, if
Eqns. (D.14) are given as boundary and initial conditions for the first and second
order problems (as in Section 3.4), the waves will modulate even before they interact
with the cylinder.
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Appendix E

Solution of Poisson equation in
elliptical coordinates using a
spectral method

In elliptical coordinates (R, 4, Z), the Poisson equation can be written as
[ 1 82 8*  a*(cosh?r — cos? §) 92

aam taat - 5 zz] U(R,8,Z) = S(R,8, Z) (E.1)

with boundary conditions
au(e, z)

«sU(8,2) + b= = F2(6,2), at R=il (E.2)
ALU(R,6) + By aug;, 9 _H.(R6), at Z=41, (E.3)

where r = (R + €.
We first procced to expand the Poisson equation and its boundary conditions

U(R,0,2) M_, Umn(R)

2 N
SR6,2Z) Y= 3 T ! Sun(R) b E™TL(2), (E.4)
Fe(0,2) | ™ fem
and ,
Hi(RO) = 3 hypn(R)E™. (E.5)
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Substitution of Eqn. (E.4) into Poisson equation (E.1) yields

E 10 im a cosh 5 gimo
ZM Z_% [ZQ-B_R?- —-m ] Unn(R)e™ T (2) + ———— ZM ZOU,,,,.(R T"(2)
a cos2 g £ i@t
- > 3 Un(R)E™TZ) = S(R.0,2). (E-6)
m_-M n=0
It is easy to proof the following identity
M-—l M_, 1 .
cos® § Z ame™ = Y -—[am_z + 2am + Gmyz]e™. (E.7)
m—“? m:—%

Applying the above identity on the last term at the left-hand side of Eqn. (E.6), we
rewrite Eqn. (E.6) as

piny [ 1 &

T, % [bm-

M n=0
2

-1

R

a cosh2

m2] Unn(R)e™ T (Z) + EN: Unmn(R)e™T"(Z)

- Mn
m= 2

@2 I' N
17 2 2|Un-2n(R) + 2Umn(R) + Uns2n(R)e™T(Z) = S(R,6,2). (ES)

m=— M n=0
By introducing a Chebyshev-Tau representation (Gottlieb and Orszag, 1977)
to incorporate the boundary conditions (E.3) at Z = +1, and by applying the recur-

rence relations for the derivatives of Chebyshev polynomials, we derive

32U ¥-1 N M1 N1
E Z Umn(R |m9TII(Z) Z Z U(O 2)(R lmGT (Z) (Eg)
m._—-"i n=1 m__A’. n=1
where
N-=-2
Ur(v?r‘lz)(R) = E 7anmq(R) + Dmn(R), (E.10)
=0

with vpq and D,n(R) given in Appendix A. Substitution of Eqns. (E.9) into the
Poisson equation (E.8) yields

1 82 a cosh2
[EEW —-m ] Umn(R) + Z YngUmq(R)
a2 N-=2
T4R? Z Yng[Um-2, g(R) + 2Umq(R) + Um+2,4(R))]
q=0

= Smn(R) + f,;[Dm_g',.(R) + 2Dpn(R) + Diny2,n(R)] = omn(R), (E.11)
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form=—%’-to %—l,a.ndnzltoN—l.

To avoid solving Eqn. (E.11) with full coupling between m with n, we pro-
ceed to diagonalize the matrix I' with elements 7,, using the same diagonalization
techniques used in the case of cylindrical coordinates. Eqn. (E.11) can thus be reduced

to

2 " 1 . R R
+ 5 [coshz rOmn(R) = 5(Om-2n(R) + 20mn(R) + U,,,+2,,.(R))] = Gmn(R).
(E.12)

Here A, are the eigenvalues of ', and Upn(R) and &mn(R) are elements of matrices

U and 3 respectively, which satisfies

U = U,
- (E.13)
T = ¥,

with € being is the eigenvector matrix of I, and €7 its transpose.

To remove the remaining coupling between m with n, we write Eqn. (E.12)

as
1 82 2 02 2 A a2An %._l ’ kg S
gom ™ et Unn(B) = 250 3. TgUn(R) = Gma(R), - (E:14)
==

where 7;,, are elements of matrix I, which is defined as

20100 ..010
02010 ..001
10201 ..000
01020 ..000
] = (E.15)
00000 ..010
00000 ..201
10000 ..020
01000 ..10 2
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We then use the same diagonalization technique used above to diagonalize
matrix I, and reduce Eqn. (E.14) to

1
(2OR?

a2 a 2A /\, 2
—m? 4 £, conh? } Omn(R) = 5252 mn(R) = ba(R),  (E16)

or
U:'"m,,(R) + ¢ { -m? + —/\,, [cosh2 (CR+¢) — A—] } l:/',,.,.(R) = (%6 mn(R), (E.17)
for m = —— to 4 F—lLandn=1to N -1 Here AL are the eigenvalues of IV, and

Umn(R) and amn(R) are elements of matrices o and E respectively, which satisfies

U = U€7,

2 (E.18)
Y = X7,

with € being is the eigenvector matrix of I".
The ODE with variable R in Eqn. (E.17) can be solved using a spectral

collocation method for each combination of m and n.
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